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Introduction

Echolocation provides animals such as bats and dolphifsamitadvanced bioa-
coustic system to catch their prey, to navigate, and to agbitacles [1]. The
principle of echolocation is based on the localization géots by acoustic detec-
tion of the echoes of these objects. The very same techngquseid in SONAR
(acronym for sound navigation and ranging) to locate tavgssels in naval de-
fense operations or to find schools of fish in commercial ®aishing. Even
human’s use echolocation for navigation [2]. Some blindptealick with their
tongue and interpret the sound waves reflected. The distartbe object is cap-
tured from the echo travel time. The lateral position is dateed from a clever
internal signal processing of the ear first to receive theedhowever, humans
produce sound of low frequency and the located objects areftire relatively
large. Marine mammals use higher frequencies in ultrasomodeover they have
the ability to use adjustable pulse rate, pulse sequencitigqatomatic gain control
to increase the precision of the location and to identify l&gnabjects.

Robert Hooke predicted already in the™.@entury that in the future we could
image the human body with sound [1]. It was however not un&l1940'’s before
the first ultrasound scan was made of the brain. Nowadayasalind imaging is
the most widely used medical imaging technique. Ultrasaoratjing is relatively
inexpensive as compared to computer tomography (CT) anchetiagesonance
imaging (MRI). The machines are small and flexible and candeel @t bed-side.
Finally, the biggest advantage is that ultrasound imagimyiges real-time im-
ages.

Imaging with ultrasound is based on the reflection of thesmaitied sound wave
at interfaces, where the wave encounters an acoustic impeaaismatch, i.e. the
reflection takes place at the interface of two materials wifferent density and
speed of sound. The frequency of ultrasound used for meuiading is in the
Megahertz range (1-50 MHz). The short wavelength assatiatéh the highest
frequency would increase the resolution. On the other hattelpuation increases
with increasing frequency, which decreases the penetraépth. The choice of

1



1. INTRODUCTION

Figure 1.1: Ultrasound echo of a fetus.

the ultrasound imaging frequency is therefore always a comige between res-
olution and the desired imaging depth.

The most common medical imaging application is the “echoadgtus, see
Fig. 1.1. Tissue contains many inhomogeneities which ec#te ultrasound and
which then appear as white speckles in the ultrasound im&ige.amniotic fluid
around the fetus contains only very few scatterers and qoiesgly the image is
completely black. We observe the same features in echacpegihy, i.e. medical
ultrasound imaging of the heart. Blood is a poor ultrasowsattsrer, resulting in
a low contrast echo. To enhance the visibility of the bloodlpaltrasound con-
trast agents (UCA) are injected in the blood stream, seel2g.Highly efficient
scattering of the contrast agent enables the quantificafiadhe perfusion of the
myocardium and other organs.

It was only by accident that ultrasound contrast agents wWms@vered some
decades ago during an intravenous injection of a salingignl[8]. The microbub-
bles contained in the solution scattered ultrasound higfilgiently. To date, the
second and third generation ultrasound contrast agentoarposed of a suspen-
sion of microbubbles with a of radius 1 tgbn, see Fig 1.3A and B. The bubbles
are of a size in the order of those of red blood cells, allovilrgm to reach even
the smallest capillaries. The microbubbles are coated aviphospholipid, albu-
min or polymer shell, see Fig. 1.3C. The coating decreasesutace tensioo
and therefore the capillary pressure /R, whereR is the radius of the bubble. In
addition the coating counteracts diffusion through theriflaice, thus preventing
the bubble from quickly dissolving in the blood.

The resonance frequency of microbubbles with a radius of i¥bis in the
megahertz range, which nicely (and for obvious reasonsjcates with the op-
timum imaging frequencies used in medical ultrasound im@aglhe mechanism
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Figure 1.2: Ultrasound echo of a rabbit kidney. A) Before the Ultraso@uohtrast Agent
is injected, and B) after the ultrasound contrast agentjeciad. Images by courtesy of
Bracco Research S.A.

by which microbubbles enhance the contrast in ultrasourtticaEmaging is two-
fold. First, microbubbles reflect ultrasound more effidigthan tissue due to the
larger difference in acoustic impedance with their surthngs. Second, in re-
sponse to the oscillating pressure field microbubbles @udeadial oscillations
due to their compressibility, which in turn generates a sdaoy sound wave. The
oscillations are highly nonlinear, i.e. the frequency mes® contains harmonic
frequency of the fundamental insonation frequency.

The most basic method in pulse-echo imaging is fundamemaging, where
no filtering of the echo is applied and the reflected intenattyhe fundamental
frequency is detected. New imaging techniques have beesiagpmd in the last 2
decades which are based on the non-linear response of thebuiidbles. The most
straightforward nonlinear technique is harmonic imagirere the % and higher
harmonic response is processed for imaging [4]. Other @gbes combine the re-
sponse of multiple transmitted ultrasound pulses. Pulsas$ion imaging [5] was
proposed where two pulses are transmitted with oppositegphaddition of the
echo’s causes the linear response to be canceled out. Theeaawrcontribution of
the bubbles results in the harmonic signal. Power modulatiaging [6] is a sec-
ond popular pulse-echo scheme based on the nonlinear biggpenses. Again
two pulses are sent, this time with different acoustic presss Subtraction of the
echo signals, while correcting for the difference in appleoustic pressure, leads
to a cancelation of the linear signal, while the nonlinegnal remains. There
are two major drawbacks of these pulse-echo schemes. @rsiniplitude of the
remaining echo is very much lower. Second, nonlinear prafiag of the ultra-
sound wave produces higher harmonics, especially for tsgpe imaging, which
makes the pulse-echo schemes less efficient. An interetstaigique is subhar-
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1. INTRODUCTION

i’
A B C

Figure 1.3: A) Vial containing ultrasound contrast agents. B) Ultrasdicontrast
agent microbubbles captured in optical microscopy. Théedear represents gm. C)
Schematic drawing of a microbubble coated with a phosplibiipnolayer (Courtesy of
T. Rozendal).

monic imaging with microbubbles, as no subharmonic comptenare produced
through propagation of the ultrasound [7].

A promising new application of ultrasound contrast agestgiinon-invasive
molecular imaging for the diagnosis of disease at the mtdedevel with ultra-
sound [8, 9]. The ultrasound contrast agents are coverddtaigeting ligands
that bind specifically to selective biomarkers on the meméiE endothelial cells,
which constitute the blood vessel wall. In general, the aagn of imaging adher-
ent microbubbles is to wait 5 - 10 minutes for all the freelcoiating microbub-
bles to be washed-out of the blood pool by the lungs and |IAdter this wash-out
time the adherent microbubbles can be imaged with ultrakourhe wash-out
approach can be avoided when we would be able to acoustidialinguish the
echo of adherent bubbles and of freely circulating bubbldss would be highly
beneficial for molecular imaging applications.

The pulse-echo techniques for contrast-enhanced ultndsouaging are de-
signed to exploit the nonlinear response of ultrasoundrashiagents. Due to
the high concentration of bubbles in the blood pool, the eahthe ultrasound
pulse is the bulk response of an ensemble of bubbles. Therssmf the bub-
ble dispersion is a complex summation of the polydisperse distribution and
the bubble-bubble interactions. The first step in our urideding of the response
of a collection of targeted bubbles, as would be requiredhfotecular imaging
application, is to separate the individual contributiorading to the collective
response. This would require, first, the full understandihthe dynamics of sin-
gle ultrasound contrast agent microbubbles. Nonlinearttiave been observed for
phospholipid-coated microbubbles which are not presenirfiooated bubbles. De
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Jonget al. [10] observed that bubbles compress significantly more thanthey

expand, which was named “compression-only” behavior. Heurhore it was ob-
served that small bubbles only oscillate above a certaistiold pressure [11].
The origin of this so-called “thresholding” behavior idlstinknown. Second, we
need to study the complex interaction between bubbles anuhtéraction of sin-
gle bubbles with a wall. Finally, we need to identify thosenditions that lead
to an improved differentiation between the response of ifttend freely circu-
lating microbubbles. as the coating on the dynamics isrstillfully understood.

Further research will be focused on the interaction betviedables or the inter-
action of a bubble near a wall can be investigated in detailddystanding of the
circumstances of which the response of adherent and fre@elylating microbub-

bles differs the most, can result in pulse-echo technigpesifécally designed for
molecular imaging applications to diagnose up to the callidvel.

We now discuss the outline of this thesis, see also Fig. hlowing the discus-
sion in the previous paragraph, the thesis can be dividedhinée parts. In the first
part the focus is on the influence of the phospholipid coatimthe bubble dynam-
ics. We start with an introduction of the known behavior ofteal microbubbles
in chapter 2. In chapter 3 we reveal the origin of the so-dditeresholding” be-
havior. Furthermore, we show why apparently identical esishow completely
different behavior by implementing the shell-buckling rebtdy Marmottantet
al. [12]. In chapter 4 we explore in detail the so-called “conggien-only” behav-
ior by means of a weakly nonlinear analysis of the shell-bongkmodel. Further-
more, we demonstrate buckling of the phospholipid-coatiptically in the Mega-
hertz range. Subharmonic behavior of coated bubbles istigeted in chapter 5
as this behavior is particularly interesting for pulseedainaging. In the second
part of the thesis the influence of a boundary on the dynanfiteea@oated bubbles
is investigated. The Brandaris 128 ultra-high speed catsezambined with an
optical tweezers setup allowing for 3D manipulation of thelie position and for
temporally resolving the bubble dynamics, see chapter 6.flllhparameter space
of ultrasound frequency, acoustic pressure and distanteetmterfering wall is
investigated in detail in chapter 7. The results are contpre bubble dynamics
model accounting for an interaction with a thin viscoelastall. As the bubble
also translates near the boundary due to an interactionitsitimage” bubble,
leading to a secondary radiation force, we investigate rdngstatory oscillations
on an isolated two-bubble system in chapter 8. The thirdqddhe thesis explores
the dynamics of bubbles adherent to a wall. The experimemtthods developed
and explored in the preceding chapters are applied to a stuthe changed re-
sponse for a functionalized bubble adherent to a target wallchapter 10 we
discuss the obtained results of the thesis and we anticgratevariety of future
applications of ultrasound contrast agents in medicalrthais.
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Chapter 3-5

Chapter 8

Chapter 9

PEG

biotin
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FITC-BSA
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Chapter 9

Figure 1.4: Guide through the thesis. Part I: the influence of the phdgmtecoating is
discussed in Ch. 3 to 5. Part Il: the bubble-wall interactiare investigated in Ch. 6 and
7. Ch. 8 reveals the bubble-bubble interaction. Part 1B:itifluence of targeting ligands
on the dynamics as well as the dynamics of adherent bubbikscgssed in Ch.9.



Dynamics of coated bubbles:
an introduction?

In this chapter an introduction is given on the known behawibphospholipid-

coated microbubbles. The contrast agent microbubble heh&sdescribed start-
ing from the details of free bubble dynamics leading to atetjaations describing
the dynamics of coated microbubbles. The response of aratew;ca coated, and
an uncoated bubble near a rigid boundary are compared in #se©f small am-
plitude oscillations where the equations of motion can bedrized. We report the
nonlinear phenomena of phospholipid-coated microbubtblaswere observed ex-
perimentally such as “compression-only” behavior, “thredding” behavior, and

subharmonic response. Furthermore, we describe the bigh-speed camera
Brandaris 128, which was especially built to investigatatead microbubbles and

which was also used here to experimentally investigateatiel dynamics of sin-
gle microbubbles.

1Based on: M. Overvelde, H. J. Vos, N. de Jong and M. Versluisasound contrast agent
microbubble dynamic¢dJitrasound Contrast Agents: Targeting and Processindnddist for Thera-
nostics, ISBN 978-88-470-1494-7, Springer-Verlag 1té#810)



2. COATED BUBBLE DYNAMICS

2.1 Introduction

The dynamics of ultrasound contrast agents has been igatsdi extensively in
the last two decades. In this chapter we give an introdudtibm the known
dynamics of coated bubbles both in theory and experiments. st&ftt with the
well-known Rayleigh-Plesset equation and discuss exjstiroretical models for
coated microbubbles. The resonance frequency and dam@rabtained in case
of small amplitude oscillations by linearizing the equaiand by comparing the
results for the coated bubbles with those of the uncoatedlesb The influence
of a rigid boundary is discussed in the simplest case usiagnéthod of images
to elaborate on the expected changes in the bubble dynamibs pproximity of
a boundary. In the experimental section we describe tha-blgh speed camera
Brandaris 128 which will be used to temporally resolve thiialadynamics of the
microbubbles in the following chapters. After the thearatisection we give an
overview of the experimentally observed behavior of phosipld-coated bubbles.
Finally, we summarize the questions still open on the dycaraf phospholipid-
coated bubbles which we investigate in further detail is thesis.

2.2 Theory

2.2.1 Dynamics of an uncoated gas bubble

The dynamics of an uncoated bubble in free space was firstibleddoy Lord
Rayleigh [13] and was later refined by Plesset [14], Nolti@gMeppiras [15, 16]
and Poritsky [17] to account for surface tension and visgasi the liquid. A
popular version of the equation of motion describing thebbeildynamics (often
referred to ashe Rayleigh-Plesset equation ) is given by:

3Kk .
. 3. 20w Ro 3kR
o | RR+ —R2> = <P +—> <—> (1— —)
( 2 " R R c 2.1)

wherep is the liquid density,u the dynamic viscosity of the liquid; the speed
of sound in the liquid gy, the surface tension of the gas-liquid system anithe
polytropic exponent of the gas inside the bublfs.is the ambient pressure and
P(t) the applied acoustic pressul, is the initial bubble radiusR represents the
time-dependent radius of the bubble, whHi@ndR represent the velocity and the
acceleration of the bubble wall, respectively. The bubblassumed to be sur-
rounded by an infinite medium and it remains spherical duasgjllations. The

8



2.2 THEORY

bubble radius is small compared to the acoustic wavelengtie gas content of
the bubble is constant. Damping of the bubble dynamics ieig@d by viscous
damping of the surrounding liquid and by acoustic radiatiiamping, through
sound radiated away from the bubble [18-25]. For the sakevgdliity the ther-
mal damping is not included here. More information on thertred damping can
be found in [26—28]. Finally, the density of the liquid isdarcompared to the gas
density.

Linearized equations

We often use the linearized equations to describe the bulbpteamics at low
driving pressures. For small amplitudes of oscillation aniltating bubble be-
haves as a harmonic oscillator. The time-dependent ralican be written as
R=Ry(1+x(t)) and through a linearization of the Rayleigh-Plesset [2Deg0a-

tion around the initial radiuRy the relative radial excursion is obtained:

X+ apdX+ whx = F (t) (2.2)

with x the relative radial excursiomy = 21fy where fy is the eigenfrequency of
the system and the dimensionless damping coefficierf (t) = Fosin(wt) is the
acoustic forcing term. The eigenfrequency of the systehova from (2.1) and

(2'2)'

The total damping coefficier{d) is given by the sum of the individual damping
coefficients. The contribution from the sound radiated leylibbble(daq) is:

3K P+20W
PR\ R wR

ad = @ c (2.4)
and the viscous contributiofdyis) is:
4v
Aiis = KR% (2.5)
The resonance frequency of the system is then obtained from:
62
fres — fo 1_ 7 (26)



2. COATED BUBBLE DYNAMICS

For a free gas bubble the damping coefficient is negligiblee Surface tension
is negligible in the mm size range and the resonance freguisngiven by the

Minnaert frequency [31] :
1 3k Py
fres~ fo= o p—R% (2.7)

For an air bubble in water we then recover the common rule winth for the
bubble resonanc&Ry ~ 3 mmkHz. It should be noted that for bubbles with a
radius< 10 um the surface tension cannot be neglected.

Assuming a steady-state resporisex(co) and substitution into Eq. 2.2 gives the
absolute relative amplitude of oscillation:

Fo
V(62— @)+ (Sean)?

For small damping, as in the case of a free gas bubble, thataagbf oscillations

of a bubble driven at a frequency well below its resonancguieacy is inversely
proportional to the effective “mass” and the eigenfreqyesguared of the sys-
tem (stiffness-controlled Well above the resonance frequency the amplitude of
oscillation is inversely proportional to the effective “asd of the systemiijertia-
driven). Close to resonance the amplitude of oscillation is irelgrgroportional

to the damping coefficient, the eigenfrequency squaredhandftective “mass” of
the system [32].

Xo| = (2.8)

2.2.2 Coated bubbles

Ultrasound contrast agents are encapsulated with a phigggherotein, palmitic
acid or polymer coating. The coating shields the water frbengas, reducing the
surface tension and inhibits the gas diffusion to preveatalbbles from dissolu-
tion. Several Rayleigh-Plesset type models have beenedkefor coated bubbles.
Church [1995] derived a theoretical model for a coated baillssuming that the
gas core is separated from the liquid by a layer of an incossiuke, solid elastic
material. The shell has a finite thickness and the shellieitysand the shell vis-
cosity depend on the rigidity of the shell and the thickndg¢keshell. Commercial
15t generation Albunex (Mallinckrodt) microbubbles have awatin shell and re-
main stable for an extended period of time at atmospherisspre. Therefore,
in Church’ model it was assumed that the elastic shell coaate the capillary
pressureRyp = Py) which stabilizes the bubble against dissolution.

The second generation contrast agents have a more flexibsplpblipid shell.
The commercially available contrast agents Son&v(Bracco), Definity (Lan-

10
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Figure 2.1: The effective surface tension as a function of the bubblaisa@®y = 2 um)
for the different models accounting for a purely elastidishe

theus Medical Imaging) and Sonazoid (GE) consist of a myeolaf phospho-
lipids with a thickness of a few nanometers. Various modet®ant for a coating
by assuming a viscoelastic thin shell, see for example [38],and more recently
[36]. The Rayleigh-Plesset type models account for thel &lyeéin elastic term
P.iasand a viscous termyis.

3K : .
.. 3. Ro 3kR R
P (RR+ §R2> = Py (ﬁ) <1_ T) — P —P(t) - 4IJFQ_ Pelas— Riis

(2.9)
The elasticity of the coating causes the surface tensiomnp with the radius of

the bubble:
20(R)
I:)elas: Tv (2-10)

The viscous term can be expressed as:

R
Ris = 4S/is@ (2.112)

with the shell viscosity§is. Hoff et al. [35] modified Church’ model to account
for the thin shell by reducing the equation of Church to a faimilar to that of

Eqg. 2.9. The effective surface tension and the shell viscasihe various models
are given in table 2.1. The effective surface tension chaagea function of the
bubble radius, see Fig. 2.1 for a plot for the various shelilei® The parameters

11



2. COATED BUBBLE DYNAMICS

Table 2.1: Values for the initial gas pressure in the bubbiRgo), the effective surface
tensiono (R) and the shell viscosit$,;s for three elastic shell models. For comparison the
values for an uncoated bubble (Rayleigh-Plesset) are alsa.g

Model Pyo [N/m?] o (R) [N/m] Siis [Kg/s
. 20y
Rayleigh-Plesset P+ R Ow -
Church [1995],
Ro
Hoff et al.[2000] Po 6Gsdsm§ (1 — ﬁ) 3Hsdsm§
De Jonget al.[1994] Pyt 22" R4 >
e Jonget al. | ] O+ﬁ Ow+Sp R T
R?
Sarkaret al.[2005] Py 0 (Ro) +Es @ -1 Ks

are chosen to be comparable in the mod8ls= 2Es = 12Gsdsrp = 1.1 N/m) for
the shell elasticity andSf = 1671ks = 48musdsip = 2.7- 107 kg/s) for the shell
viscosity, as reported by [37]. In this regime, the slopehef éffective surface
tension as a function of the bubble radius is similar for treeis by De Jongt
al. [34] (blue) and Sarkaet al. [36] (red). The main difference between the models
is found for the effective surface tension at the initial blebradius(o(Rp)). It
equalsay, for the model by De Jongt al. [34] and it varies for the model by
Sarkaret al. [36]. In this example we choose(Ry) = 0.036 N/m for the model
of Sarkaret al. The model of Church [33], modified by Hoét al. [35] for a
thin shell, has a lower initial effective surface tensioriRy) = 0 N/m, and has a
different slope (black). Note that the effective surfacasien in these models is
not bound to an upper or lower limit and the effective surfeszesion can become
negative and larger tham,.

Marmottantet al. [12] introduced a model which seems to be more applicable
for high amplitude oscillations. The model accounts for st shell and also
for buckling and rupture of the shell. Compression of thetitelbeads to an in-
creased phospholipid concentration. Therefore, in thetieleegime the effective
surface tension decrease is a linear function of the arearwothpression. Further
compression leads to such high phospholipid concentisativat the shell tends to
buckle leading to a tensionless state where the surfaceteisseffectively zero.
On the other hand expansion of the bubble decreases thehahigsh concentra-
tion and leads to rupture. It is assumed that the surfaceotemgll effectively

12
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Figure 2.2: The effective surface tension as a function of the bubbleisgBy = 2 um) for
the model of Marmottargt al.[12] including an elastic regime and buckling and rupture
of the shell.

relax toay. The effective surface tension using Eq. 2.9 for the thrgées is
given by:

0 if R<Ry
RZ
o(R)={ x %—1 if Ry <R<R (2.12)
Ow if ruptured andR > R

with x the shell elasticity andR, and R; the buckling and rupture radius, re-
spectively. The effective surface tension as a functiorhefradius is shown in
Fig. 2.2 for the Marmottant model. The initial surface temnsis chosen to be
0 (Rp) = 0.036 N/m similar to the example of the Sarkar model. The chofce
0 (Ro) in combination with the typical value for the shell eladick = S,/2 =
0.55 N/mresults iR, = 0.97 Ry andR, = 1.03Ry. In this example the bubble
is assumed to rupture when the surface tension reaspe$he shell viscosity in
Eq. 2.9 is given bySis = Ks. As will be shown in the following paragraph, the
elasticity of the shell increases the eigenfrequency otbiligble while the shell
viscosity increases the total damping of the system.

13



2. COATED BUBBLE DYNAMICS

Linearized equations

The bubble resonance frequency and its corresponding dgropefficient for the
coated bubble is derived in a similar way as in Sec. 2.2.1tlfeomodel of De Jong
et al.[34] the eigenfrequency and the total dampidg: = &ad + Svis + Oshell) are
given by:

fo= x i<3KPo+(3K—1)@+ ﬁ) (2.13)
2mt\| pR3 Ro Ro
3K 20w
PCRy ( o ﬁ) av S
ot = Y + abR%+ 47TPR8(AX) (2.14)

The eigenfrequency of a coated bubble has two contributions part that is
identical to the eigenfrequency of an uncoated bubble amdkestic shell contribu-
tion. The shell viscositys; increases the damping for a coated bubble. Fig. 2.3A
shows the eigenfrequency and resonance frequency for arat@tcand coated
bubble. The resonance frequency and the eigenfrequentye africoated bubble
agree to within graphical resolution. The eigenfrequenttya ooated bubble in
comparison to an uncoated microbubble is higher due to tek alasticity. The

15 0.2
— ) __ UNCOated 1 I| s yncoated
1 —— ted
@, coated 0.15 A coate
/I,;‘\ 10 0, uncoated £ 1 1
s - = =W, coated Zg 0.1 1 Y1
“ gl I\ - 1 1
\ 0.05
~ ~> A 1 1 B
0 = 0 L1
0 2 4 6 8 0 1 2 3 4 5
RO (um) Iflnorm

Figure 2.3: A) The resonance frequency as a function of the initial babatius Rp) for
an uncoated (blue solid line) and coated microbubble (gseéd line). For comparison
the eigenfrequency is plotted (dashed lines). The res@enfiaquency and the eigenfre-
quency of the uncoated bubble agree to within graphicaluésa. B) The amplitude of
oscillation for an uncoated (blue) and coated (green) bith Ry = 2 um, normalized
with the maximum amplitude of oscillation of the uncoatectmbubble. The driving
frequency is normalized to the resonance frequency of teeated microbubble.
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damping has a negligible influence on the resonance freguenan uncoated
bubble and for coated bubbles wiy > 1 um. Fig. 2.3B shows the resonance
curve of an uncoated and coated microbubble with a restidigsaf 2um. The
amplitude of oscillation and the resonance frequency ammalized to the maxi-
mum amplitude of oscillation and the resonance frequentliyeofincoated bubble,
respectively. Both the damping and eigenfrequency ineréasa coated micro-
bubble, while the effective “mass” stays the same. The aogsiof oscillations
at resonance is therefore lower when the bubble has a skelFig. 2.3B. Below
resonance, neglecting the influence of the damping, themsyst stiffness driven.
The shell increases the stiffness of the system and the tahplof oscillation be-
low resonance is therefore lower for a coated microbubb&e. above resonance
the amplitude of oscillations is inversely proportionalthe effective “mass” of
the system. Consequently well above resonance the amplhituokscillations does
not depend on the shell properties.

2.2.3 Bubble dynamics near a rigid wall

In this section we discuss the influence of a rigid wall on thblbe dynamics.
We start with the simplest approach, the so-cattegthod of imagego simulate
the influence of a wall. In literature several extensionshi bubble dynamics
equations have been made to account for the presence ofdawddi. All the
models described here are based on the method of imagesedeipid-ig. 2.4. If
the wall is rigid, the specific acoustic impedarnte- p cis infinite, and no energy
crosses the wall. To describe the acoustic (or equivalgh#yfluid-mechanical
field) the wall is replaced by an identical image bubble testiilg in-phase with the
real bubble and positioned at the mirrored image point. §manchics of the real
bubble is influenced by the pressure emitted by the imagel&ubline dynamics
of a coated bubble near a rigid wall is therefore described Rayleigh-Plesset
type equation including the radiated pressure of the imagéle:

3k .
p <|§R+ §R2> = Pgo <%> <1— ?) R
(2.15)

. R 20(R) R d(RR2>

R R g Pal2d

whered represents the distance between the bubble and the walla Bobble
positioned directly at the wall, such as bubbles floating gairest the capillary

wall, the distancel is simply given by the bubble radil& In this particular case
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2. COATED BUBBLE DYNAMICS

ATV TR

Figure 2.4: In (A) the actual situation, where the bubble is located aistadced from
the rigid wall, (B) shows the method of images in which theligateplaced by an image
bubble.

the bubble dynamics equation becomes:

3k .
3. . Ry 3kR
0 —RR+2R2> =P, (-) (1——> =
(2 P\R N\ ’ (2.16)

. R 20(R) R

- (t)_4“§_ R _4S/is@

The difference between the uncoated bubble in in the unkemlifidid and floating
against the wall are the pre-factors in the left hand sideqpfZ16. Note that all
assumptions made previously for the Rayleigh-Plessettiequior an uncoated
microbubble remain valid. Therefore the bubble must rensainerical, which
may not be strictly true in the experimental situation. Faaraple we know that
bubbles deform close to the wall [38].

Linearized equations

For an (un)coated bubble at a wall the eigenfrequency angbitignean be derived

in a similar way as in Sec. 2.2.1. The rigid wall increasesedifiective “mass” of

the bubble by a factor /2 resulting in a decrease of the eigenfrequency and the
damping. The eigenfrequency and damping can be derivedimikasway as in
Sec.2.2.1. The eigenfrequency and damping for an uncoatdulebat a rigid wall

reduce to:
wall 2 free free

5wa|| _ \/éafree% 0 85free
3 .

(2.17)
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Fig. 2.5 shows the resonance curve of a coated bubble ingeergblue) and at
the wall (red). The amplitude of oscillation and the appliedjuency are normal-
ized to that of the bubble in free space. The amplitude oflations at resonance
is \/3/2 larger for a bubble at a wall than for bubble in the unbourftiéd. Well
below the resonance frequency the amplitude of oscillatisrunchanged as the
stiffness of the system dominates the amplitude of osicitiat Well above the res-
onance frequency the amplitude of oscillation j2 3imes smaller for a bubble at
a rigid wall than in the unbounded fluid because of the in@éasfective “mass”
of the system.

2.3 Experiments

2.3.1 Optical and acoustical characterization

The theoretical models are validated through experimenssmmle bubbles. Acous-
tical and optical experiments reveal the response of UCAabitbles and both
have there own particular advantages and disadvantagasouistical experiments
the scattered pressure, or pressure-tif(ig curve, is recorded. Acoustic charac-
terization has the advantage of a high sampling rate using pallse sequences.
The scattered pressure of a single bubble however is liniaettr 1 Pa) and close

15
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Figure 2.5: Resonance curves for an uncoated bubble with a initial saofi@ yum in free
space (blue) and at a rigid wall (red). The frequency and thplitude are normalized
with the resonance frequency and amplitude of oscillatiaesonance in the free case.
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2. COATED BUBBLE DYNAMICS

to the noise level of our detection system. The size of thesttacer focus is in the
order of the acoustic wavelength and in order to prevent #tection of multiple
bubble echoes the bubble must be isolated inithétro setup. In optical exper-
iments a high-speed camera is used to record the radialnespor radius-time
R(t) curve, of single bubbles. Such a camera must temporallyveetioe dynam-
ics of the microbubbles which is driven at MHz frequenciesierEfore framer-
ates of tens of millions of frames per second are requirede Biandaris 128
camera, see Fig. 2.6, was especially designed for this parf29]. The cam-
era uses a fast rotating mirror (max 20,000 rps) to sweepntiage across 128
highly sensitive CCDs (charge-coupled device). At maxingg®ed an interframe
time of 40 nanoseconds is obtained, which corresponds tnzefiate of 25 Mfps.
Fig. 2.7 shows a sequence of 25 frames recorded with the Briant?8 camera
at a framerate of 13.5 Mfps. The driving pulse has a frequef@y/7 MHz and an
acoustic pressure amplitude of 30 kPa. The accomparmft)gurve of the micro-
bubble derived from the Brandaris recording is shown in Ei§. The maximum
amplitude of oscillation is 200 nm corresponding to a re&atmplitude of 10%.

The first characterization of SonoV@evas performed acoustically on a micro-
bubble suspension by Gores al. [37]. Recently, opticaR(t) curves of single
UCA microbubbles (SonoVif®) were recorded and fitted, to an elastic shell model
(Hoff's model), by Chettyet al.[40]. In the model the values of the shell thickness
and shell viscosity were fixed and it was found that the sHa#8tieity increases
with increasing bubble radius. The experiments were peworwith a single ap-
plied frequency of 0.5 MHz and a pressure amplitude betw@esmd 80 kPa. To
test the validity of the shell parameters for the very santblmithe bubble should
be exposed to a set of frequencies and pressures. Van deriefd1] insoni-
fied single UCA microbubbles (BR-14) consecutively with 1ttasound pulses,
increasing the frequency for each pulse, near resonandé.tNi8 method named
microbubble spectroscopy, the resonance curve was thamettby plotting the
amplitude of oscillation as a function of the applied freggye A fit of the lin-
earized shell model of Marmottaet al. [12] then resulted in the shell elasticity
and shell viscosity. In contrast to Chettal. [40], Van der Meeeet al.[41] found
that the shell elasticity was nearly constant while thelshgtosity decreases with
decreasing dilatation ra{g/R). One should note that all above experiments were
performed at or in close proximity to a (capillary) wall.

De Jonget al. [10] reported on an observation of coated microbubblesvat lo
applied acoustic pressures, where the bubbles compreskatuly expand. An
example of this highly nonlinear effect, referred to as “goassion-only” behav-
ior, is shown in Fig. 2.9. De Jorgf al. showed that “compression-only” behavior
occurs for 40% of the bubbles even at pressures as low as 5QRidpzarkably all
bubbles with an initial radius less thanu@n show “compression-only” behavior
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2.3 EXPERIMENTS

Figure 2.6: Schematic drawing of the Brandaris 128 camera. The rotatingr sweeps
the light beam projecting the microscope image on the CCDlse mirror sweeps the
image over the CCD’s with a minimum interframe time of 40 ngguivalent a maximum
framerate of 25 Mfps. (courtesy: E.C. Gelderblom)

at a frequency of 1 MHz. “Compression-only” behavior hasendeen observed
for uncoated bubbles and cannot be described by a modeltaugpurely for an
elastic shell. Actually, the purely elastic shell modelerepredict a decrease of
the nonlinear behavior of the coated microbubbles as caedp@r the dynamics
of an uncoated microbubble. The model of Marmottainal. [12] accounting for
an elastic shell and for buckling and rupture of the shelllieen very successful
in predicting “compression-only” behavior. As stated byrmattantet al. the
compression modulus in the elastic state is much higher ith&ine buckled or
ruptured state. For a bubble where the resting radius velsedo buckling it is
much harder to expand than to compress resulting in “corajanenly” behavior
of the bubble [12].

Emmeret al.[11] showed an oscillation threshold for coated microbabhwith
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2. COATED BUBBLE DYNAMICS

Figure 2.7: Sequence of 50 frames of a 2.2n radius bubble recorded with the Bran-
daris 128 camera at a framerate of 13.5 Mfps.
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Figure 2.8: TheR(t) curve of the same bubble as in Fig. 2.7. The bubble is insanifith
an ultrasound pulse with a frequency of 2.7 MHz and an acopstéissure of 30 kPa.
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Figure 2.9: Example of a bubble showing “compression-only” behavier, the oscillat-
ing bubble hardly expands and strongly compresses. Thdéulith a radiufky = 1.6 um
is insonified with an acoustic pressi®e—= 55 kPa and a frequendy= 1.7 MHz.

a radius smaller than 2/m at a driving frequency of 1.7 MHz. Below a certain
pressure optically no oscillations where observed, whileva this threshold the
amplitude of oscillation increases linearly with the apglacoustic pressure. An
example this so-called “thresholding” behavior is showFRim 2.10. At pressures
below 28 kPa the bubble hardly oscillates, while a sudderease of the amplitude
of oscillation is observed for higher acoustic pressurés dause of this nonlinear
“thresholding” behavior is not understood. A third nonkneffect that is often
observed for coated bubbles are strong subharmonic freguamponents. Sub-
harmonic behavior is well-known for uncoated bubbles armhig observed above
a certain pressure threshold which increases with inargagamping, see e.g.
Prosperetti [42]. As the oscillations of coated bubblescanesiderably stronger
damped it has been assumed that subharmonic behavior fiedcleabbles must
occur at higher acoustic pressures. However, it has beemnsBrperimentally
that subharmonic behavior of coated bubbles occurs at laseustic pressures
even lower than those for uncoated bubbles [7, 43-49]. Thei&otransform
of the radius-time curve of an oscillating coated bubbl®iifted at a frequency
of 2 MHz shows a strong subharmonic component at a frequehtyMHz, see
Fig. 2.11. No explanation has been found for the increasbdasmonic behavior
found for coated microbubbles.
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Figure 2.10: Example of “thresholding” behavior. The relative ampliuaf oscillation
increases strongly nonlinear as a function of the appliedistic pressure. The bubble has
aradiusRy = 1.9 um and is insonified at a frequency of 2.7 MHz.
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Figure 2.11: A) Radius-time curve of a bubble with a radidg= 4 um is insonified with
an acoustic pressufg = 80 kPa and a frequendy= 2 MHz. B) The frequency domain
of theR(t}-curve shows besides the fundamental componehta? MHz the presence of
a strong subharmonic componentfat 1 MHz.

2.4 Open questions

The goal of this thesis is to acoustically distinguish betwadherent and freely
circulating microbubbles. The first step is to optimize eatrpulse-echo tech-
niques and to develop new techniques based on the nonliyeanics of the
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coated microbubbles. It has indeed been observed that pblgsd-coated mi-
crobubbles show strong nonlinear behavior, such as “cassfme-only” behavior,
“thresholding” behavior, and subharmonic frequencieoatacoustic pressures.
These nonlinear dynamics are ideal for medical imaging wittasound as they
allow to distinguish between the tissue echo and the bulible.dHowever, in the
experiments the bubbles are injected in an in vitro setup (eapillary or flow
cell) and float up due to buoyancy until they reach the top.vizdie to the limited
focal depth of the microscope objective the rising bubbtesdéficult to capture in
free space. The radial bubble dynamics is therefore trawditiy captured with the
bubbles positioned against the top wall of the capillarythiese experiments the
optical axis was perpendicular to the flow cell wall, i.e. aswalways observed in
top-view. Voset al.[38] showed, with a setup allowing both, a side-view (optica
axis parallel to the wall) and a top-view that the oscillaicof UCA microbub-
bles may appear spherical in top-view and can be quite asymenire side-view.
Therefore, the influence of the coating and the capillaryndawny cannot be sepa-
rated. Besides the cause of the strong nonlinearly obséefealior we would like
to answer some questions in more detail. What causes “tidisg” behavior?
Are the effects we observe bubble-size dependent or arerbeyy influenced by
resonance? Is there a model that predicts all these nonjamesmomena? Can we
optimize the current pulse-echo techniques to exploitrtbrdinear behavior? Can
we possibly develop new more efficient pulse-echo techsigue

When the influence of the phospholipid coating on the bubjatehics is known
we can investigate the proximity of a boundary and for tangeapplications the
adherence to a boundary on the bubble dynamics. From théagioms described
above we expect a change in the resonance frequency and Hiéudin at reso-
nance. In the simulations the wall was considered as anteifjrthick rigid wall.
No energy passes the wall and the ultrasound will be fullyeotdld at the wall. In
our experiments however the wall is acoustically transpate allow ultrasound
to enter the flow cell and to prevent unwanted reflections. seoh a compliant
wall the (complex) amplitude of the image bubble needs todapeed to the wall
properties. There are still several questions relateddartfiuence of the bound-
ary. Do we observe a change in the dynamics close to a bouhdiryhere a
difference in the dynamics between floating bubbles neaadery and that of
adherent bubbles? Can we predict the bubble dynamics nealtal®the change
in dynamics sufficient to distinguish acoustically betwaeherent and freely cir-
culating microbubbles?
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Nonlinear shell behavior of
phospholipid-coated
microbubbles?!

The key feature of ultrasound contrast agents microbubbldistinguishing blood
pool echo from tissue echo is their nonlinear behavior. Hereinvestigate exper-
imentally the influence of the stabilizing phospholipidiiog on the dynamics of
ultrasound contrast agent microbubbles. We record thealadynamics of indi-
vidual microbubbles with an ultra-high speed camera as &fion of the driving
pressure and frequency. The shell was found to enhance thieear bubble
response at acoustic pressures as low as 10 kPa. For ingrgastoustic pres-
sures a decrease of the frequency of maximum response wawedg$or one set
of bubbles, leading to a pronounced skewness of the resemanee, which we
show to be the origin of the “thresholding” behavior [Emmaérat., UMB 33(6),
2007]. For another set of bubbles the frequency of maximwpaese was found
to lie just above the resonance frequency of an uncoatedomibble, and to be
independent of the applied acoustic pressure. The shekling bubble model by
Marmottant et al. [JASAL18(6), 2005], which accounts for buckling and rupture
of the shell, captures both cases for a unique set of the efigstic shell param-
eters. The difference in the observed nonlinear dynamitsdas the two sets of
bubbles can be explained by a difference in the initial stefeensioro (Ry) which
is directly related to the phospholipid concentration a thubble interface.

1submitted as: M. Overvelde, V. Garbin, J. Sijl, B. Dollet,d¢.Jong, D. Lohse, and M. Versluis,
Nonlinear shell behavior of phospholipid-coated micrdideb, Ultrasound Med. Biol.
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3.1 Introduction

Ultrasound is the most commonly used medical imaging tegleni As compared
to computer tomography (CT) and magnetic resonance imdiRi) ultrasound
offers the advantage that the hardware is relatively inesipe and that it pro-
vides real-time images. Imaging with ultrasound is basetherreflection of the
transmitted sound wave at tissue interfaces, where the @raeunters an acoustic
impedance mismatch, and scattering due to inhomogenéitibe tissue. Unlike
tissue, blood is a poor ultrasound scatterer, resultingawaontrast echo. To en-
hance the visibility of the blood pool, ultrasound contiagénts (UCA) have been
developed, enabling the visualization of the perfusionrghas. A promising new
application of UCA is in molecular imaging [8] with ultrasadi and in local drug
delivery [9].

The typical UCA is composed of a suspension of microbublykedis 1-5um)
which are coated with a phospholipid, albumin or polymeiisiiége coating de-
creases the surface tensigrand therefore the capillary pressure/R and in ad-
dition counteracts diffusion through the interface, thtesvpnting the bubble from
quickly dissolving in the blood. The mechanism by which momrbbles enhance
the contrast in ultrasound medical imaging is two-fold. sgimicrobubbles re-
flect ultrasound more efficiently than tissue due to the ladgéerence in acoustic
impedance with their surroundings. Second, in respongdetogcillating pressure
field microbubbles undergo radial oscillations due to tleeimpressibility, which
in turn generates a secondary sound wave. The oscillatienkighly nonlinear,
and likewise the sound emitted by the oscillating bubblevegal pulse-echo tech-
niques have been developed to increase the contrasstetratio (CTR), making
use of the nonlinear components in the acoustic responsécodlmabbles, which
are not found in the tissue, e.g. pulse-inversion [5] andgsowodulation [6]. The
nonlinear response specific to coated microbubbles offergpotential for new
strategies for the optimization of the CTR.

The bubble dynamics in an ultrasound field can be described Rypyleigh-
Plesset type equation [29, 50]. The influence of the coatasddeen investigated in
the last two decades, resulting in various extensions oReéndeigh-Plesset equa-
tion. De Jonget al. [34] describe the coating as a thin homogeneous viscoelasti
solid with a shell elastic paramet& and a shell friction paramet&;. A more
theoretical approach was provided by Church [33] who carsid a viscoelastic
surface layer of finite thickness. The models by De Jengl. and Church were
both developed for the albumin-coated contrast agent Athuifid5] reduced the
model developed by Church to the limit of a thin shell. Saetaal.[36] proposed
a model for a thin shell of a viscoelastic solid where thectife surface tension
depends on the area of the bubble and the elasticity of tHe &m¢he model by
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Stride [51] the coating is a molecular monolayer, whichésted as a viscoelastic
homogeneous material, and the shell parameters depene sarfiace molecular
concentration. Doinikoet al.[52] addressed the lipid shell as a viscoelastic fluid
of finite thickness described by the linear Maxwell consitiiequation.

The models accounting for a viscoelastic solid predict thatelasticity of the
shell increases the resonance frequency. Van der Meal. [41] scanned the
insonation frequency at constant acoustic pressure tanatesonance curves. The
acoustic pressure was maintained below 40 kPa to ensuee lbble dynamics.
Van der Meeeet al.[41] indeed found an increase of the resonance frequenty wit
respect to uncoated microbubbles.

Emmeret al. [11] investigated the nonlinear dynamics of phospholigicted
microbubbleskyg = 1—5 pum by increasing the applied acoustic pressure at a con-
stant frequency of 1.7 MHz. They found that a threshold pressxists, for mi-
crobubbles smaller thaRy = 2 um, for the onset of bubble oscillations, and that
the threshold pressure decreases with increasing buldge Bubbles with a ra-
dius larger than 2tm show a linear increase in the amplitude of oscillation with
the applied acoustic pressure.

De Jonget al.[10] observed another nonlinear phenomenon which was terme
“compression-only” behavior, where the coated bubblespress significantly
more than they expand. In the study of De Jen@l. “compression-only” behav-
ior was observed in 40 out of 100 experiments on phosphetipated bubbles,
for acoustic pressures as low as 50 kPa. “Compression-d@kiavior was most
pronounced for small bubbles. Models accounting ftinear viscoelastic shell
do not predict the “thresholding” or “compression-onlyhiagior.

Marmottantet al. [12] developed a model that incorporates the viscoelakéd s
and in addition accounts for buckling and rupture of the Istielt predicts the
“compression-only” behavior in great detail. The modelaséd on the behavior
of a phospholipid monolayer for quasi-static compressi@3—55]. Depending
on the number of phospholipid molecules per unit area theagdsr interface is
shielded to a different extent, resulting in a differeneefive surface tension. In
a small range of expansion and compression the phosphgliali behaves elas-
tically as in the previous models and the effective surfacesion is linear with
the surface area of the bubble. In the elastic regime, cosajme of the bubble
decreases the surface area and assuming a constant nurpbespholipids thus
increases the packing density and decreases the effegtiaees tension. For fur-
ther compression the bubble reaches a critical packingitgenbere the dense
phospholipid monolayer starts to buckle. Below the buckliadius the effective
surface tension vanishes. On the other hand, expansiore duibble results in a
lower packing density. Above a critical radius for the exgian, the concentra-
tion of the phospholipids at the interface is so low that trenalayer ruptures. If
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the gas is in direct contact with the liquid the effectiveface tension reaches the
surface tension of water.

Van der Meeret al. measured the resonance curves at low acoustic pressure.
For uncoated bubbles it is well known that the resonanceecbecomes asym-
metrical and that the frequency of maximum response desseaih increasing
acoustic pressure [56, 57]. Emmefral. scanned the acoustic pressure, keeping
the frequency constant and showed that small bubbles havaidhest threshold
pressure. The question remains whether this effect is bedibé or frequency de-
pendent. Therefore some questions remained unansweiea thi;m experiments
performed up to now did not cover the full parameter space.etteb insight in
the nonlinear phenomena of coated bubbles can be gainedaogiclyg both the
applied acoustic pressure and the insonation frequendyeosame bubble.

In this chapter, we measure the resonance curve of a bubbléuastion of the
acoustic pressure to study the influence of the acoustisyre®n the resonance
curve. Similarly, we study the influence of the frequencylm‘thresholding” be-
havior. The experimental results are compared to the egistiodels and the influ-
ence of the phospholipid-coating on the nonlinear dynawii¢$CA microbubbles
is discussed in detail. The chapter is organized as folldwSec. 3.2 the predic-
tions of three types of models are discussed. The setup anodiecibility of the
experiments is addressed in Sec. 3.3. The full dynamicsngiiesiphospholipid
microbubbles are described and compared with simulatmogtain the shell pa-
rameters in Sec. 3.4. In Sec. 3.5 the influence of the shelhpeters are discussed
on the bubble dynamics and the conclusions are given in S&c. 3

3.2 Models

The most general equation describing the radial dynamies adated bubble is
given by an extended Rayleigh-Plesset equation [12]:

o (ﬁRJrgRZ) = <Po+ ZaéoRo)> <%>3K (1_ ¥> -

R 20(R) R

R R R

wherep is the liquid density,u the dynamic viscosity of the liquid; the speed

of sound in the liquid, and the polytropic exponent of the gas inside the bubble.
Py is the ambient pressure afdt) is the driving pressure pulse with a pressure
amplitudeP;. Ry is the initial bubble radiusR(t) the time-dependent radius of the
bubble and the overdots denote the time derivativesaccounts for the surface
dilatational viscosity of the shell andl(R) is the effective surface tension which
in some models is a function of the radius.

—PR—P(t) —4u

28



3.2 MODELS

In this section we discuss the results of three differentet®da model for an
uncoated bubble, a model for a bubble witlngar viscoelastic shell and a model
including buckling and rupture of the shell. In the case ofiacoated bubble there
is no shell and the surface viscosiky = 0. The gas is in direct contact with the
water, resulting in the surface tension of the gas-liqustayno (R) = gy.

The shell-buckling model by Marmottaat al. [12] accounts for three regimes
of the shell behavior: elastic, buckled, and ruptured ardntiodel is applicable
to high amplitude oscillations. Fig. 3.1 shows the effexturface tension in the
three regimes which is given by:

0 if R<Ry
RZ
o(R) = X(@—l> if R < R<R (3.2)
Ow if R>R

with x the elasticity of the shell and,, the surface tension of the gas-water in-
terface. The shell buckles for radii below the buckling wsdr, and is in the

ruptured state for radii larger th& = Ry, /% 4 1. The effective surface tension
in the elastic regime depends on the concentration of pludigpds and therefore
on the area of the bubble. The initial state is defined by thialisurface tension

0(Rp) which is directly related to the buckling radit® = Ry/ @ +1, see

buckled elastic ruptured

al

0.072

0.036
o(Ry)

effective surface tension (N/m)

Radius

Figure 3.1: Effective surface tension in the shell-buckling model asuacfion of the
bubble radius. The effective surface tension in the modglthaee regimes. The bubble
buckles forR < Ry, is ruptured foR > Ry, and behaves elastically in f&f < R< R;.
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3. NONLINEAR SHELL BEHAVIOR

Fig. 3.1. We prefer to define(Ryp) instead ofR, as was done by Marmottast
al. [12] becauser (Ry) immediately reveals the initial state of the shell with esp
to the buckled and ruptured regime. The results will alsodregared to a coated
bubble model accounting forlaear viscoelastic shell which is valid in the limit
of small amplitude oscillations. We use the linearized @fie surface tension of
the shell-buckling model in the elastic regime:

o(R) = 0(Ro) +2x (%—1) (3.3)
In the caser (Ry) = oy we obtain the well-known equation for the effective surface
tension of De Jongt al. [34].

For small amplitude oscillations we can obtain the eigenfescy of the bubble.
For a coated bubble the eigenfrequency of the bubble wlthear viscoelastic
shell equals the eigenfrequency of the model by Marmottéuat. in the elastic
regime. The eigenfrequency of a bubble witlnear viscoelastic shelf§ is given
by [41]:

1 1 20(Ry) 4x
fsoated— — | ___ [ 3kPy+ (3k — 1 + = 3.4
In the case of an uncoated bubble the eigenfrequency is (89, 3
1 1 20,
uncoated__ B w
fo = 27‘[\] R <3KF’0+(3K 1) Ro) (3.5)

To investigate the dynamics as a function of the appliedueegy and acoustic
pressure, simulations are performed for a bubble with ausdglj = 3.2 um with
the three different models described above. Fig. 3.2 shbe/sesonance curves
obtained from numerical simulations as a function of theuatio pressure for an
uncoated microbubble (A), a microbubble withireear viscoelastic shell (B), and
a microbubble with a viscoelastic shell including bucklengd rupture of the shell
(C). To investigate the linearity of the resonance curves rélative fundamental
amplitude of oscillatiord; is divided by the acoustic pressufg In the case of a
linear resonance curve the shape and amplitude are ideaitieach pressure. For
all three models the valu, /P; is normalized to the response of an uncoated bub-
ble atP, = 1 kPa. The uncoated bubble has a resonance frequency neaz,l MH
see Fig. 3.2A. The maximum amplitud®; /Ps)norm Slightly decreases with in-
creasing pressure which reflects the onset of its nonlinebawior. In Fig. 3.2B
the response of a bubble with theear viscoelastic shell is shown. Its resonance
frequency is almost 3 times the resonance frequency of tbeated bubble, owing
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Figure 3.2: Simulations of the resonance curve as a function of the dicopiessure.
The relative amplitude of oscillatio; is divided by the acoustic pressure ampliturRie
and normalized with the response of the uncoated bubbig at1 kPa. A) Uncoated.
B) Linear viscoelastic shell. C) Elastic shell including bucklingdanupture of the shell.
The initial radius of the bubble iBy = 3.2 um, and in case of a coating= 2.5 N/m,
0(Ry) = 0.02 N/m, andks = 6- 102 kg/s.
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3. NONLINEAR SHELL BEHAVIOR

to the elasticity while its maximum amplitude response iBr&s lower than that
of the uncoated bubble as a result of the combined effeceafitreased damping
and elasticity of the shell. The oscillation amplitude idépendent of the applied
acoustic pressure and indicates a linear response. Fig. shéws the simula-
tions performed with the shell-buckling model, showingelegence on the applied
acoustic pressure. For the initial surface tension of th¥bleuo (Ry) = 0.02 N/m
and for low acoustic pressuf® = 1 kPa, the bubble is oscillating in the elastic
regime. Therefore the resonance curve is identical to theorese of the bubble
with the linear viscoelastic shell. An increase of the acoustic pressutaces
strong nonlinear behavior and skewing of the resonancessus/observed. For
linear oscillations the response is maximal at the resandiemuency while in
the case of nonlinear behavior this need to be the case. kragethere is a fre-
quency of maximum response which decreases with increasiogstic pressure.
At P, =40 kPa the frequency of maximum response decreased andaghpeo
the eigenfrequency of the uncoated bubble. The relativditude of oscillation
at the frequency of maximum response increases with incgeasoustic pressure
which reveals another nonlinear response. The resonameibe obtained with
the three models is significantly different. An experiméstady of the resonance
curves as a function of the acoustic pressure applied to U@kobubbles may
therefore reveal the influence of the phospholipid-coatinghe bubble dynamics.

3.3 Experimental setup

Fig. 3.3 shows a schematic drawing of the experimental sefupe ultrasound
contrast agent BR-14 (Bracco S.A., Geneva, Switzerland)imjacted in an Opti-
Cell cell culture chamber (NUN®, Thermo Fisher Scientific) filled with a saline
solution. The OptiCell chamber was mounted in a water bathcmnected to
a 3D micropositioning stage. A water tank mounted on a platege was de-
signed to hold an illumination fiber and the ultrasound tdaicer (PA168, Preci-
sion Acoustics). The driving pulse for the transducer wasegated by an arbitrary
waveform generator (8026, Tabor Electronics) and amplifigch RF-amplifier
(350L, ENI). The sample was imaged with an upright microgceguipped with
a water-immersed 100 objective (Olympus). The dynamics of the microbubble
was captured with the ultra high-speed Brandaris 128 caf38jeat a framerate
of 15 million frames per second (Mfps). An optical tweezestup allowed for
the positioning of a single microbubble in 3D [58]. The im&d laser beam of
the optical tweezers was coupled into the microscope usdighaoic mirror. The
optical trap was formed through the imaging objective. Téies combining the
Brandaris 128 camera with optical tweezers will be desdribaletail in chapter 6
and 7.
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To Brandaris camera

To Optical Tweezers Setup ) o
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Figure 3.3: (color online) Schematic drawing of the experimental setilipe solution
containing contrast agent microbubbles is injected in ati@@fl chamber. The chamber
is located in a water tank which holds the transducer andhiliation fiber. The driving
ultrasound pulse is produced by an arbitrary waveform gaoe(AWG), amplified, and
sent to the transducer. The bubbles are imaged and mamigulath optical tweezers
through the same 100objective.

The bubbles were insonified with an ultrasound burst of 16sywhose first and
last 3 cycles were tapered with a Gaussian envelope. To kednetjuency with
a constant acoustic pressure the transducer was calilmatedo the experiments
with a needle hydrophone (HPMO02/1, Precision Acoustice)align the acoustical
focus of the transducer and the optical focus of the objediie OptiCell was
removed, the tip of the hydrophone was positioned in thedaxfuthe objective,
and the transducer was aligned with the planar-stage. Thst&i® connected to
the OptiCell chamber allowed for the movement of the sampdiependently of
the transducer to keep the acoustical and optical focusedigA motorized stage
(M110-2.DGm, PI) was used to accurately control the distdetween the bubble
in the trap and the OptiCell wall. In all experiments the mriom distance between
the bubble and the wall was 1@0m.

The experimental protocol is based on the microbubble spsxipy method by
Van der Meeet al.[41]. Each resonance curve is a result of 2 runs of the Bramdar
128 camera recording 6 movies of 128 frames with 12 incrgasgguencies at
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Figure 3.4: A) ExperimentaR(t)-curve of a bubbld&, = 2 um, insonified with an acous-
tic pressurd>, = 37.5 kPa and a frequendy= 1.7 MHz. B) The relative fundamental re-
sponse;, C) the low frequency responsg D) The frequency response of tRét)-curve.
E) The frequency response of a singld pm radius bubble insonified witR, = 30 kPa
andf = 1.7 MHz is reproducible over 12 separated experiments.

constant acoustic pressure. The experiment was repeate@listmes for increas-
ing acoustic pressure on the very same bubble, until theprhmeter space of
acoustic pressure and frequency ranges was covered (ty@qgaressures). Each
one of the 96 (& 12) movies therefore captured the radial dynamics at aesingl
acoustic pressure and frequency. The radius vs. time c&{@dqurve) of the
bubble was determined by tracking the contour of the bubsbach frame with a
code programmed in Matl&h

To ensure that the observed nonlinear phenomena were rsgccéy changes
in the bubble properties due to repeated insonation, wemeed a set of control
experiments. In the first control experiment we sent 12 jgudg€onstant acoustic
pressure and frequency and confirmed the reproducibilitthef12 R(t}-curves.
The same protocol was then repeated for a higher acousssyreeand we found
that the relative standard deviation at the fundamentgliacy was below 7% un-
less a bubble visibly reduced in size during the experimdrig. 3.4E shows the
reproducibility of the bubble frequency response of a2 radius bubble insoni-
fied 12 times with an acoustic pressiite= 30 kPa and frequencf = 1.7 MHz.
The second test consisted in repeating a resonance frggeneperiment on a sin-
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gle bubble at a fixed acoustic pressure, to verify that thévleubehavior would

not change due to repetitive insonation. We observed tleafrdfguency of maxi-

mum response was constant for a given acoustic pressurallyi-io ensure that
by repetitive frequency scans at increasing acoustic presshe bubble proper-
ties were not altered, we repeated one run with low acoustisspre after a few
runs with increasing acoustic pressure and compared tpernss with the one
obtained in a previous run at the same pressure. These mxquesi confirmed that
the observed nonlinear phenomena are a result of the phigggkeamated bubble

dynamics and not a side effect due to aging of the bubble.

Fig. 3.4A shows a typical oscillation off = 2 um bubble insonified at a fre-
quencyf = 1.7 MHz and at an acoustic pressiie= 37.5 kPa. The compression
phase of the oscillations is larger than the expansion pAdsecompression phase
of the oscillations is larger than the expansion phase. “Thimpression-only” be-
havior [10] causes a low frequency component, see chapidrelauthors showed
through a weakly nonlinear analysis that the “compressiag* behavior can be
excluded by filtering out the low frequency component. THatnee excursion at
the fundamental frequenay (blue) and the low frequency respongge(red) are
shown in Fig. 3.5B and C. We use as a measure for the maximativestadial
amplitude at the fundamental frequerrsy.

max min
A = &7 (3.6)
2
where el'™ is the maximum relative expansion aafl’" the minimum relative
expansion, see Fig. 3.4B.

In the following we nondimensionalize the frequency witle tiesonance fre-

quency of the uncoated bubble:

f

= fgncoated (3'7)

and with the frequency of maximum response:
Qui = MR _ 3.8
MR — f(l)mcoated ( : )

The resonance curves will be obtained frémas a function of2.
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3. NONLINEAR SHELL BEHAVIOR

3.4 Results

Fig. 3.5 shows the resonance curve for three values of thesicgressur®, =
7.5,12.5, and 25 kPa. The bubble has a radiufRgt= 3.2 um and is positioned
150 um from the wall while the applied frequency is between 0.78 arMHz.
The experimental data (circles) are compared to the thfeeht models, the un-
coated bubble (blue), the coated bubble witimaar viscoelastic shell (black) and
the coated bubble including buckling and rupture of thelgnetl). For compar-
ison the amplitude of oscillatioA; is normalized to the maximum simulated re-
sponse of an uncoated bubbi{"™). For an acoustic pressuRg = 7.5 kPa (top)
the experimental data show a maximum respofdgg = 2.5. The frequency
of maximum response decreasedXgr = 1.7 at P, = 12.5 kPa (middle) and to

(@) Experiment
Uncoated

Viscoelastic
Shell-buckling

P_=7.5kPa
a 4

Pa =125 kPa_

0.7 1 15 2 2.5 3
Q

Figure 3.5: Skewing of the resonance curve of a coated microbubble aatmwustic pres-
sures P, = 7.5, 12.5, and 25 kPa). The model for the uncoated bubble)hlud dinear
elastic shell model (black) cannot predict skewing of tteorence curve at low acoustic
pressures. The shellmodel [12] including buckling andug{red) captures the skewness
of the experimental resonance curve (circles). The buladwis is 3.2um and the shell
parameters are the same for both coated bubble moglets2.5 N/m, ks = 6-10"° kg/s
ando(Ry) = 0.02 N/m.
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Qur = 1.4 atP, = 25 kPa (bottom). Besides a decrease in the frequency of maxi-
mum response the resonance curvelat 12.5 and 25 kPa are strongly skewed.
At low acoustic pressureP{ = 7.5 kPa) the observed maximum amplitude of os-
cillation is small compared to the simulated amplitude ofiaooated microbubble
A" =0.1. The maximum amplitude of oscillation relative to an urtedébubble
increases with increasing acoustic pressure, afrl at25 kPa the amplitude of
oscillation isAT°"™ = 0.4. The experiment &, = 7.5 kPa was repeated to ensure
that the change in behavior for increasing acoustic pregsumot an artifact due to
a change in the properties of the bubble. The comparisonthgtimodels showed
that the shell-buckling model accounting for an elastiémeg buckling and rup-
ture of the shell (red) captures the decrease in the freguaEmaximum response,
the asymmetry of the resonance curves, and the relativeitadglof oscillation
with a single set of shell parameters.

We present the experimentally obtained relative ampliwidescillation A; for
the full acoustic pressure and frequency scan in an iscoomtiot in Fig. 3.6A.
A total of 120R(t)}-curves have been measured near the frequency of maximum
responseQyr in the acoustic pressure rangg= 7.5— 25 kPa at an interval of
2.5 kPa. Fig. 3.6B shows the simulations with the shell-bngkmodel with the
same shell parameters as in Fig. 3.5. The comparison of égeéncy of maxi-
mum respons&yr obtained from the experiments (circles) and the simulation
for the three different models is shown in Fig. 3.8%,r decreases by 50% for
an increase of the acoustic pressure fieya= 7.5 to P, = 25 kPa. The frequency
of maximum respons@yr simulated with the shell-buckling model (red) is in
excellent agreement with the experimental results. Formpeaoison the frequency
of maximum response obtained with the model for an uncoatdilb and the
linear viscoelastic model are shown. In the shell-buckling moddéba acoustic
pressures®;, < 2 kPa the oscillations are in the elastic regime and the &ecy
of maximum response equals the resonance frequency of edcoabble that fol-
lows from thelinear viscoelastic model. Above acoustic pressuPgs- 2 kPa the
shell starts to buckle and the frequency of maximum respdaesesases rapidly,
approaching the resonance frequency of an uncoated buti®e-e20 kPa.

A vertical scan line of Fig. 3.6A and B results in the typicatonance curves
shown in Fig. 3.5. A horizontal scan line on the other handltes$n the pressure-
dependent response for different applied frequencies. ab® fthis is the same
experiment as performed by Emmedral. [11] with the exception that Emmeit
al. varied bubble radiuRy, not frequency. Such a horizontal scan-line is depicted
in Fig. 3.7 where the relative amplitude of oscillatidw is shown for three ap-
plied frequencief2 = 2.1 (A), Q =15 (B), andQ =1 (C). For each frequency,
the experimentally observed amplitude of oscillationsc{es) increases nonlin-
early with increasing acoustic pressure. In particulas,sb-called “thresholding”
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Figure 3.6: The relative amplitude of oscillatios as a function of the acoustic pressure
P, and frequenc. A) Experimentally measuref as a function oP, andQ for a bubble
Ro = 3.2 um. The frequency of maximum respor3gr (white dots) B) Simulations with
the model including buckling and rupture of the shell. Theteviine shows the frequency
of maximum respons@yr. The bubble has a radius of 3.2n and the values for the shell
parameters arg = 2.5 N/m, ks = 6- 102 kg/s ando (Ry) = 0.02 N/m. C) The frequency
of maximum respons@yr as a function of;.
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Figure 3.7: Relative amplitude of oscillatioA; as a function of the acoustic pressixe
A; increases nonlinearly and displays the “thresholding’dvér. The prediction of the
shell-buckling model is plotted (lines) for each value of finequency and captures the
experimental data (circles).

behavior is apparent. The threshold pressure for the ohssicdlations depends
on the frequency and is most pronounced®o¢ 1.5, where the bubble shows no
oscillations if driven belowP; = 15 kPa and abruptly starts to oscillate ¢~ 0.1)
atP, = 17.5 kPa. The shell-buckling model (solid lines) reproducesdata accu-
rately and predicts the “thresholding” behavior.

The decrease of the resonance frequency with increasimgyreas shown in
Fig. 3.6C does not uniquely describe the bubble responseoba&rve a different
behavior for different bubbles, even for bubbles of the saize Fig. 3.8 shows the
frequency of maximum respon$§hyr of two equally sized bubble’y = 2.4 um.
To compare the response of different bubbles we Qigk as a function ofA;
instead ofP,. One bubble has a frequency of maximum respdgg = 2.2 at
A; = 0.03 and shows a decrease in the frequency of maximum respdd€8w
with increasingAs, reaching a value dyr = 1.4 atA; = 0.12 (triangles). The
second bubble shows a different trefql;r = 1.4 and independent &f; (squares).
The experimental results are compared to the results ofhilélsuckling model.
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Figure 3.8: Normalized frequency of maximum resporidgg as a function of the relative
amplitude of oscillatiorA; for two equally sized microbubbld = 2.4 um. One of the
bubbles shows a decrease in the frequency of maximum resghys (triangles), while
the other bubble has a constant frequency of maximum respsnsiares). Simulations
are shown with the shell-buckling model for three initiabea: the bubble is initially in
the buckled state (blue), the ruptured state (green), amdlstic regime (red), see inset.
The shell elasticity and shell viscosity are respectively 2.5 N/m, ks = 6- 102 kg/s.

Simulations performed for different values of the shellgmaetersy andks show
that these parameters do not change the observed tréhgkinvith A;. Therefore
simulations were performed to calculate the frequency ofimam response for a
bubbleRy = 2.4 um for the same shell elasticity = 2.5 N/m and shell viscosity
ks = 6-107° kg/s and only the initial surface tensianRy), which depends on
the phospholipid concentration on the bubble surface, lieddo investigate its
influence, see Fig. 3.8. The simulations witiRy) = 0,,/2 (red) capture the
decrease in th@yr (triangles), while simulations witlw (Ry) = 0 N/m capture
the constanQyr (squares).

Over 4000R(t}curves were obtained experimentally on 45 bubbles raniging
size betweerRy = 1.2 — 3.4 um. The resulting 168 frequencies of maximum re-
sponseQyr are shown as a function @&, (dots) for all bubbles in Fig. 3.9.
For small amplitude of oscillationsA{ < 0.05) the experimental data (dots) are
scattered betweeRyr = 1.2 andQur = 3. For increasing amplitude of oscilla-
tions the frequency of maximum response converges to a edlQgr = 1.2. For
comparison the regimes 6fyr are shown for the smallest bubldRg = 1.2 um
(red) and largest bubblgy = 3.4 um (blue) are shown. The overlapping regime
of both bubbles is highlighted in green. The minim@ygr is obtained with
0(Rp) = 0 N/m and the maximun@ur with o(Ry) = ow/2. Similar to the ex-
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Figure 3.9: Experimental obtaine@yr as a function of the relative amplitude of os-
cillation A; (dots) for all bubble®y = 1.2 — 3.4 um. The simulated regimes of the fre-
quency of maximum respongeyr for a small bubbleRy = 1.2 um (red) and a large
bubbleRy = 3.4 um (blue) are plotted. The overlapping regime of both bubisieslored
green. The lines sho®yr for o(Ry) = 0 N/m (bottom) ands(Ry) = ow/2 (top). The
shell elasticity and shell viscosity are kept constgng 2.5 N/m, ks = 6- 102 kg/s.

perimental result®yr is strongly scattered at o, while atA; > 0.15 the fre-
quency of maximum response is practically indistinguisddiom the resonance
frequency of an uncoated bubble.

3.5 Discussion

3.5.1 Initial surface tension

In the previous section we found a large variability in thegiiency of maximum
responseQyr as a function of the relative amplitude of oscillatida even for
equally sized bubbles. Simulations showed that the vdit\ali the trend inQyr
can be explained by a difference in the initial surfactamcemtration, expressed
in the effective surface tension at restRy). To investigate the influence of(Rp)
on the “compression-only” behavior, skewing of the resaeaaurves, and the
“thresholding” behavior, we perform simulations with thee8-buckling model.
The simulations were performed for a bubble with a radigs=2 um, with a
shell elasticityy = 2.5 N/m, and a shell viscositys = 6- 102 kg/s.
“Compression-only” behavior was first observed in experitady De Jonget
al. [10]. Marmottantet al. [12] showed that the initial state of the bubble, i.e.
the initial surface tensioor(Ry), is essential to determine whether “compression-
only” behavior appears. They showed that the most pronauhoempression-
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Figure 3.10: Influence of the initial surface tension on the radial dyremo(Ry) =

0 N/m (bottom) o (Ry) = ow/2 (middle), andr(Ry) = oy (top). The acoustic pressure and
frequency are 40 kPa arfdl = 1.3, respectively. AR(t)}-curve, B) fundamental response
&unds and C) low frequency responsg

only” behavior is observed for a bubble with a radigs close to its buckling
radiusRy, which is equivalent t@ (Ry) = 0 N/m. The authors pointed out that the

dP
compression modulusV — of the coated bubble is much higher in the elastic

state than in the buckled or ruptured state. In our simuiatiohe shell elastic-
ity x =2.5N/m and indeed the compression modulus of the bubble isM€sti
higher in the elastic regime. Fig. 3.10 shows the simulatdible dynamics for
a “ruptured” bubbleo(Ry) = oy (top), an “elastic” bubbles(Ry) = ogy/2 (mid-
dle), and a “buckled” bubble (Ry) = 0 N/m (bottom), see also inset Fig. 3.8. The
R(t)}curves (A) are divided in the fundamental respoggg; (B) and the low fre-
quency responsg (C), the latter being a measure for the “compression-only”
behavior of the bubble 4. The “buckled” bubble shows morem®ssion than ex-
pansion as expected. The expansion of the “ruptured” bublteore pronounced
as compared to its compression, hence we term this behaskpahsion-only”
behavior in analogy of the “compression-only” behaviortfog “buckled” bubble.
The explanation is similar to that of “compression-only’hbagior. The compres-
sion modulus in the ruptured regime is much lower than in thstie regime and
for a “ruptured” bubble it is easier to expand than to comgrés the case of an
“elastic” bubble the bubble starts to oscillate in the midpof the elastic regime
and the oscillations are symmetrical.

In our experiments, we predominantly observe “compressity” behavior.
Only occasionally € 3%) the expansion was observed to be larger than the com-
pression. From the above simulations we conclude that nuigiles have an ini-
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Figure 3.11: Simulations for two values of the initial surface tensian(Ry) = 0 N/m
(blue) ando(Ry) = agw/2 (red). A) Simulated resonance curves for three valuesef th
acoustic pressurig, = 1 kPa (top) P, = 20 kPa (middle), an&®, = 40 kPa (bottom). B)
Simulated relative amplitude of oscillatioAs as a function of the acoustic press@sdor
three different applied frequencie®:= 0.5 (top),Q = 2.3 (middle), and2 = 4 (bottom).

tial surface tensiow (Ry) = 0 N/m and therefor&, close to the buckling radius.
This can be explained as the capillary pressure forces thieldsito a new equi-
librium, and tensionless state, as previously pointed gilarmottantet al. [12].

Fig. 3.5, 3.6, and 3.7 reveal that a bubble with a skewed egsmcurve shows a
decrease of the frequency of maximum response with inergasioustic pressure.
In addition it displays “thresholding” behavior [11]. Thatial surface tension of
this particular bubble was found to lsgRy) = 0.02 N/m. Here we will focus on
the influence obr(Rp) on the shape of the resonance curves and the “thresholding”
behavior for the two cases most relevant to our experimentbuckled” bubble
and an “elastic” bubble. Fig. 3.11A shows the resonanceesuiior three values of
the acoustic pressuf® = 1, 20, and 40 kPa (top-bottom). The shape of the reso-
nance curve of the “buckling” bubble (blue) is hardly chashder all three pres-
sures. The frequency of maximum response is almost indepérmd the acous-
tic pressure and lies just above the resonance frequency oheoated bubble,
Qur = 1.3. ForP, = 1 kPa (top) the “elastic” bubble (red) oscillates only in the
elastic regime and behaves like a bubble modeled wiihear viscoelastic shell
as can be inferred from its frequency of maximum respdhge = Qres= 3.3. On
the other hand, the frequency of maximum respdgg of the “elastic” bubble
decreases with increasing pressBge= 20 kPa (middle). Since the radius of the
“elastic” bubble now exceeds the elastic regime betwkgeandR;, the bubble is

43



3. NONLINEAR SHELL BEHAVIOR

now also oscillating in the buckled and ruptured regime. fféguency of maxi-
mum response of the “elastic” bubble decreases even mor fer40 kPa (bot-
tom), approaching the resonance frequency of an uncoatgaldour he resonance
curves of the “elastic” bubble are strongly skewedPat 20 kPa and 40 kPa and
practically no oscillations are observed for frequencielow its maximum re-
sponse frequency.

Fig. 3.11B shows the influence of(Ry) on the “thresholding” behavior. The
amplitude of oscillations for the “buckled” bubble (bluetreases almost linearly
with the acoustic pressure at all three frequencies (tdfwivg. On the contrary,
the “elastic” bubble (red) shows strong nonlinear behawor a driving frequency
below the resonance frequency of the coated bulfd}g; & 3.3), the amplitude
of oscillations increases slowly with increasing acouptiessure, until the slope
suddenly changes and we observe “thresholding” behavify at 40 kPa (top)
or Py = 22 kPa (middle). The “elastic” bubble is initially oscililag in the elastic
regime andd; increases very slowly witR,. At a certain amplitude of oscillation
the bubble starts to buckle ard rapidly increases witRy, leading to an apparent
“thresholding” behavior. For comparison the linear ins@@ the responsg; of
a bubble with dinear viscoelastic shell is shown (black, middle).

3.5.2 Ambient pressure

The variability in the experimentally observed dynamias;tsas skewing of the
resonance curve, “thresholding” behavior, and “compeogssnly” behavior, can
be explained by a change in the initial surface tengigRy), which depends on
the concentration of phospholipids at the bubble interfd&revided that the total
amount of phospholipids at the interface is constant, agdamthe radius of the
bubble would change(Ry). The extent of the elastic regime can be calculated
from Eq. 3.3 withR=R,, Ry =Ry, x = 2.5 N/m, ando(R;) — 0(Ry) = gy. The
total size of the elastic regime isQ1Ry and a bubble withiRy = Ry is only 1%
smaller than a bubble starting to oscillate in the ruptuesime. As the volume
scales withR® we can deduce from the ideal gas law that a change in the atnbien
pressure of 3% is sufficient to obtain a decrease of 1RyirTherefore, we antic-
ipate that a slight change of the ambient pressure will caugdenge in the initial
surface tension leading to a change in the observed bubbknugs phenomena.
The change in “compression-only” and subharmonic behadosed by a change
in the ambient pressure has been shown very recently byiRgiek al. [59].

3.5.3 Shell elasticity

Values of the shell elasticity of phospholipid-coated mirbbles were previously
obtained by fitting the data to models accounting fonear viscoelastic shell. By
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recalculating these values to the elasticity as definedignpiéper the parameters
correspond to g = 0.5—1 N/m [37, 40, 41]. In these papers the amplitude of
oscillation A; was in the order of 0.1 and the oscillations were expectecttimb
the elastic regime of the bubble. In the present chapterhaw shat at oscillation
amplitudes ofA; > 0.01 the bubble is not oscillating purely in the elastic regime
The obtained shell elasticities fitted tdiaear viscoelastic model can therefore
be seen as effective shell elasticities. By definition tHecative shell elasticities
are lower than the shell elasticity obtained for the modeluding buckling and
rupture of the shell and they decrease with increasing egbjgicoustic pressure.

3.5.4 Shell viscosity

In this chapter we showed that the relative amplitude ofliasicin A; is well pre-
dicted with a constant shell viscosity= 6- 102 kg/s. With theinear viscoelastic
model of De Jonget al. [34] Gorceet al. [37] found a shell friction parameter of
St = 0.45.- 108 kg/s, which is corresponds to a shell viscogity= 9- 10~° kg/s.
Chettyet al. [40] used the model described by Heff al. [40]. The authors used
a shell viscosityus = 1 Pas and a shell thickneds= 2.5 nm takingR = R, the
shell viscosity is recalculatex = 8- 10~° kg/s . On the other hand, Van der Meer
et al.[41] obtained the damping from the width of the obtained nesce curves
and found a shell viscosity in the same order. In additioratitbors found that the
shell viscosity decreases with increasing dilation ratesdme cases the resonance
curves obtained by Van der Meet al. were observed to be asymmetrical and the
simple analogy with a harmonic oscillator is not valid anyeo

On the other hand, th(t)}-curves show detailed information of the bubble re-
sponse at a single applied frequency and pressure. FigB 3@ws the experi-
mentalR(t)}-curve (blue) and the simulation (red) of 23:m radius bubble insoni-
fied with P, = 25 kPa andf = 1.5 MHz (Fig. 3.12A). The maximum amplitude
of oscillation is indeed well predicted by the simulationghws = 6-10~° kg/s.
However, the simulations show oscillations after insamtwhile in the experi-
ments the bubble stops oscillating immediately after iason. Using a higheks
for the simulations the bubble stops oscillating immedyjagdter the ultrasound
is turned of, but these simulations predict a too low amg@étof oscillationA;.
Possible explanations can be the thinning behavior as foyrdan der Meeret
al.. However, we have obtained strongly skewed resonance whih cannot
be described by the response of a simple harmonic oscillAtmsther possibility
is that the shell viscosity depends on the initial state efahbble, i.e. is the bubble
oscillating in the elastic, in the buckled, or in the ruptustate. But in the end, the
damping of the shell is of less importance on the dynamice@bubble than the
nonlinear behavior as a result of buckling and rupture oftinl.
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Experiment

Simulation

0 2 4 6 8 10

Figure 3.12: A) Applied acoustic pressurB; = 25 kPa and = 1.5 MHz. B) Comparison
of an experimentaR(t)-curve (blue) with a simulateR(t)-curve (red).

3.6 Conclusions and outlook

We have studied experimentally the resonance curves ofichil ultrasound con-
trast agent microbubbles as a function of the acoustic pres3 he experiments
were performed by positioning the microbubbles with theddidptical tweezers
so that they can be regarded as if in an unbounded fluid. Imidyswe were able
to exclude wall effects, and isolate the influence of the phoBpid monolayer
only. Coated microbubbles show strong nonlinear dynanié®aaacoustic pres-
sures, such as “compression-only” behavior and skewingefésonance curve,
which could not be predicted by models accounting fonear viscoelastic shell.
The model by Marmottardt al.[12] accounting for an elastic regime and including
buckling and rupture of the shell accurately predicts theeobed nonlinear behav-
ior of the phospholipid-coated microbubbles. We found thatdynamics of the
BR-14 microbubbles can be explained with a single shelliielgs x = 2.5 N/m
independent of the bubble radius. The maximum amplitudeorese of the bub-
bles is well predicted with a shell viscosikg = 6- 10~° kg/s.

In general, in the experiments the bubbles show more cosipreghan expan-
sion limiting the initial surface tensioo(Rp) in the regime < 0(Ry) < ow/2.
Roughly, the observed phenomena can be divided into twanesydepending on
the initial surface tension. A bubble initially in the bueklstateo (Ry) = 0 N/m or
Ro = Ry shows strong compression-only behavior. The frequencyaximum re-
sponse is nedR = 1.3 and almost independent of the acoustic pressure. A bubble
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initially in the elastic regime & o(Rp) < ow/2 shows a rapid decrease of the fre-
quency of maximum response with increasing acoustic pressw a pronounced
skewing of the resonance curves which we show is the origithefso-called
“thresholding” behavior.

The fundamental understanding of the nonlinear dynamipsa$pholipid-coated
bubbles at low acoustic pressures is important to optinhiedrequencies and pres-
sures used in the ultrasound imaging techniques. The modieiding buckling
and rupture of the shell allows for the development of newgimg techniques us-
ing the observed phenomena of phospholipid-coated bubbtasnstance, “elas-
tic” bubbles show “thresholding” behavior and are interesfor power modula-
tion [6] due to the nonlinear increase in the amplitude ofillagion with applied
pressure. On the other hand, engineering of bubbles foifepchniques is a
promising application. Stridet al.[60] added nanopatrticles to the shell restricting
the bubbles to compress and behave nonlinearly. Furtheanes on the influ-
ence of a phospholipid-coating on “compression-only” wiraand subharmonic
behavior of UCA microbubbles is conducted and describecketaillin chapter 4
and 5. Another exciting prospect is the development of uligh-speed fluores-
cence imaging to visualize the time-resolved distributiddmphospholipids at the
interface during buckling and rupture of the shell.
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“Compression-only” behavior
of phospholipid-coated
microbubbles’?

Oscillating phospholipid-coated ultrasound contrast mgmicrobubbles display
a so-called “compression-only” behavior, where it is obged that the bubbles
compress efficiently while their expansion is suppresseete ld theoretical un-

derstanding of the source of this nonlinear behavior is fted through a weakly
nonlinear analysis of the shell buckling model proposed layrivbttant et al.. It

is shown that the radial dynamics of the bubble can be coresidas a superposi-
tion of a linear response at the fundamental driving frequyeand a second order
nonlinear low-frequency response that describes the negaffset of the mean
bubble radius. The analytical solution deduced from thekleaonlinear anal-

ysis shows that the “compression-only” behavior resultsrfra rapid change of
the shell elasticity with bubble radius. In addition, thedia dynamics of single
phospholipid-coated microbubbles was recorded as a fanatif both the ampli-
tude and the frequency of the driving pressure pulse. Thepadson between
the experimental data and the theory shows that the magnibfiicompression-

only” behavior is mainly determined by the initial phospipads concentration on
the bubble surface, which slightly varies from bubble tolbeb

1submitted as: Jeroen Sijl, Marlies Overvelde, Benjaminl@pValeria Garbin, Nico de Jong,
Detlef Lohse and Michel Versluis, “Compression-only” beloa: A second order nonlinear response
of ultrasound contrast agent microbubbles, J. Acoust. Sot.

2The experimental work in this chapter is part of the presessis. The analytical and numerical
work was performed by Jeroen Sijl.
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4.1 Introduction

The contrast in medical ultrasound imaging is enhancedigirthe use of micron-
sized bubbles which owing to their compressibility inceeéise scattering cross
section of the blood pool. The typical bubble radius of @iinand contrast agent
(UCA) microbubbles is 2 to pim. The gas core consists of air or an inert gas and
the bubbles are coated with a thin protein, lipid or polynaset. The microbub-
bles are resonant scatterers at medical ultrasound freigsesf 1 to 5 MHz. More-
over, unlike tissue, the contrast agents scatter at hamfi@guencies of the driv-
ing ultrasound frequency, mainly at the second harmonic frequendy, &hich
opens up improved imaging modalities in ultrasound, terima&ginonic imaging
[61]. Power modulation imaging [62] and pulse inversion ging [5], includ-
ing many of its derivatives are now standard pulse-echonigaks found on ul-
trasound scanner equipment. These imaging modalitiexplibie the nonlinear
behavior of the ultrasound contrast agents. A thorough andamental under-
standing of the interaction of the ultrasound with the babbthe induced bubble
dynamics and its resulting nonlinear acoustic responskeietore of prime im-
portance for the development of improved contrast-entchniteasound imaging.

The nonlinear dynamics of bubbles is described by the RgtyBiesset (RP)
equation. For coated bubbles the RP equation is extendédavget of shell pa-
rameters to model the rheological behavior of the visctiel@®ating. De Jong
et al. [63] introduced a shell stiffness parameter and a shellidnicparameter
for Albunex, a human serum albumin-coated microcapsuleur€h[33] refined
the physical modeling for Albunex, while Hoétt al. [35] introduced a thin shell
limit to model the phospholipid monolayer of Sonazoid, eosecgeneration con-
trast agent. The volumetric oscillations predicted by thglBigh-Plesset equation
were then used to predict attenuation and acoustic batéscdtthe agent. Ex-
periments on a representative sample of the UCA, contaimiaigy microbubbles,
confirm the general trends and the influence of the bubbléngpas predicted by
the models. The resonance frequency is observed to shifjliehfrequencies due
to the shell stiffness and the extra damping introduced bystiell decreases the
overall acoustic response [37, 41, 63].

At a detailed level and particularly on a single bubble letel agreement be-
tween theory and experiment is less convincing. Recentaptharacterization
studies using high-speed imaging revealed some integefgiiiures of single bub-
ble dynamics that could not be described by the traditionated bubble models.
One of them is “compression-only” behavior reported by Deglet al. [10],
where the bubble oscillations are non-symmetric with resfmethe resting radius;
the bubbles compress more than they expand.
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Figure 4.1: An example of “compression-only” behavior of a phosphalipbated micro-
bubble, recorded with the Brandaris ultrahigh-speed cam&) optical images, showing
buckling of the phospholipid shell B) the driving pressutdse C) corresponding radius
time curve.

A typical example of “compression-only” behavior is showriig. 4.1. A selec-
tion of a high-speed recording displays the dynamics gfiendadius phospholipid-
coated BR-14 (Bracco Research S.A., Geneva, Switzerlamttyast agent bub-
ble exited with a driving pulse with an amplitude of 40 kPa anftequency of
1.5 MHz. Each row in Fig. 4.1A corresponds to one acoustitecythe frames to
the left and to the right show the bubble during expansionletthe center frames
show the bubble during compression at maximum pressurerakligs time curve
of the bubble displays “compression-only” behavior, thblila compresses twice
as much relative to its expansion, see Fig. 4.1C. Anothe¢urfedhat can be iden-
tified in the recording is that the coating of the bubble appéa buckle during
compression. Buckling also known as the 3-D collapse of apholipid mono-
layer occurs when a phospholipid monolayer is compressgdnbkeits saturated
phospholipid concentration. At this point which is markedziero surface tension
the monolayer starts to fold. The buckling is shown to be nslte and repeat-
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able. It should be noted that in typical recordings the kugkls not always as
pronounced as shown in Fig. 4.1A. The “compression-onlyiavér occurs quite
frequently, 50% in a typical sample, see De Jengl.[10].

Buckling is well-known for macroscopic phospholipid moayérs which has
inspired Marmottanet al. [12] to develop a coated bubble dynamics model based
on the quasi-static behavior of a phospholipid monolayé+@8]. The model re-
lates the lipids concentration at the gas-liquid interfcan effective surface ten-
sion. The total number of phospholipids on the interfacexexfiand consequently
the effective surface tension changes with bubble raditenwvithe bubble pulsates.
Marmottantet al. [12] show that this description of the phospholipid shellaof
microbubble is able to capture correctly the “compressinly’ behavior shown
by these bubbles.

Experimental data presented in the paper by Marmo#tat. show very good
agreement with the model calculations for each individuddidbe where the shell
parameters are free to vary for each case. So far we have mat twa general-
ized description of “compression-only” behavior with aque and dedicated set
of shell parameters; the overall trends are difficult to nhodibis has become ev-
ident in the work of De Jongt al. [10] where no clear dependency was found
on either the initial bubble radius, the driving pulse freqoy or pressure ampli-
tude. The goal of this paper is therefore to come to a moreeusay description
of the “compression-only” behavior. Following previousseassful work on un-
coated bubbles we linearize the generalized model of théeRiiyPlesset equa-
tion for coated bubbles up to second order to come to an éellgblution. The
analytical solution is shown to give direct and detailedghs on how the shell
parameters govern the “compression-only” behavior. We lzdso studied exper-
imentally the radial dynamics and related “compressioly“dpehavior of single
BR-14 microbubbles using the Brandaris 128 ultra-high dpmenera [39]. Both
the frequency and the amplitude of the driving pulse werédaio enable a full
characterization of this phenomenon.

In the following section, Sec. 4.2, details of the model drallinearization will
be discussed. In Sec. 4.3 we will discuss and show the intjgicaof the results
from the analytical solution on the full model of Marmottatal. and the effect of
the shell parameters. In Sec. 4.4 the experimental set@gsesibed and in Sec. 4.5
the experimental results are discussed and related to theufuerical model. In
Sec. 4.6 we end with a discussion. The conclusions are pessanSec. 4.7.

4.2 Weakly nonlinear analysis

To describe the radial dynamics of a phospholipid-coatectabubble, different
models have been proposed [12, 33, 35, 36, 63]. In geneeahtbspholipid shell
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is assumed to increase the damping of the system and is tatkescicount through
a shell viscosityks. In earlier models the increase of the maximum response fre-
quency of coated microbubbles was accounted for by incatimgy a shell stiffness
that is described by the compression modulus or shell efgsj [35, 41, 63].

For a phospholipid-coated microbubble the shell elagticéin be expressed as
the gradient that describes the change of the effectivaceitension as a function
of the bubble surface areaaccording toy = A(do/dA) [12]. For a bubble
oscillating with a small amplitude the effective surfacesien may be expressed
as a linear function of the bubble radigsthrougho(R) ~ 2x(R/Ry—1). For
larger amplitudes of oscillation the relation between tfiective surface tension
0 (R) and bubble radiuR deviates from this linear relation. Some authors assume
a linear relationship betweenand R, with constary also for larger amplitudes of
oscillation, while others explore more complex behaviothef viscoelastic shell.
For now we assume that the relationiR) is unknown. The generalized form of
the bubble dynamics equation for a phospholipid-coatedahidble then reads:

p <R§+2R2> N <P°+ ZGF(%oRO)> <%_>3K (1_ 3KTR> 4.1)

20(R) R R
SR M AKsg —Po—Pa(t)

In this equatiorR, R andR are the radius, velocity and acceleration of the bubble
wall, respectively. The initial bubble radius is given By and the ambient pres-
sure byPy. The properties of the surrounding water are described dyigtosity

U = 103 Pas, the density = 10° kg/m? and the speed of soumd= 1500 m/s.
The driving pressure pulse is describedRaft). The relation between the internal
gas pressurgy, the gas temperature and bubble volume is described by tiie po
tropic ideal gas lawPy 0 R3¢ wherex is the polytropic exponent. For isothermal
oscillationsk = 1 and for adiabatic oscillations is equal to the ratio of the
specific heats of the gas inside the bublilg/C,. The thermal diffusion length
scale inside the gas during one oscillation cycle can be stiovibe smaller than
the bubble radius [12, 41]. Therefore we approximate thélasons as adiabatic.
For the experimental agent BR-14 the gas core consists filipercarbon-gas
with k = C,/C, = 1.07 [12, 41]. Following Eller [27] we can show that thermal
damping is small but not zero in this problem. We account fiermal damping
through a slight increase of the liquid viscosjty= 2-102 Pas.

To understand why a phospholipid-coated microbubble sHoespression-
only” behavior it is insightful to approximate Eqg. 4.1 withsacond order lin-
earization. The linearized equations can be solved analigtias shown before for
similar equations [33, 69]. As a most general assumption ppecximateo (R)
aroundo (Rp) for small amplitude oscillations arouri®h through a second-order
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Taylor expansion:

2
0(R) = 0(Ro) +2Xert (% - 1> + %Zeff (% — 1> 4.2)

where we have defined,
do(R)

1
Xeft = zRo

d%0(R
leti = R§ ;R(Z)‘RO (4.4)

To come to an analytical solution of Eq. 4.1 we substitute4=2|into Eq. 4.1 and
we use a perturbation technique where we substitute,

R(t) = Ro(1+x) (4.5)

into Eq. 4.1. Herexrepresent the bubble’s relative radial excursion, wixere: 1.
After substitution we keep only the first and second orden$erThis results in the
following equation.

%+ (pOX + WX = Pa(t) + 4bpxx+ ax? — gxz — %X (4.6)

wherewy is the linear eigenfrequency of the system. We can show lleatetsults
of the weakly nonlinear analysis presented in the followamg independent of
the choice of the initial surface tensianRy). To simplify the calculations we
therefore choose (Ry) to be zero. The eigenfrequency is then given by:

3Pk 4y
2 0 eff
W=7
Rip  Rip
From Eq. 4.7 itis clear that the shell elasticity increasesdigenfrequency of the
coated bubble compared to that of an uncoated bubble. Téarldimensionless
damping coefficient of the system consists of three parts,
B 3Pk 4u 4Kg
wCRP  wRip  woRGp
where the first term represents acoustic radiation damgiiggsecond represents
viscous damping and the third represents shell viscous igmphe shell viscous

damping is the largest and accounts for nearly 80% of the dataping of the
system. The second order terms (resonance and dampingyeneby:

g~ oKk +1)  (Lerr—BXerr)
2REp R3p

(4.7)

(4.8)

(4.9)
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~ Po3k(3k +1) n 2u n 3Ks
Rop4c Rsp  Rdp
The solution of Eq. 4.6 depends on the driving pressure wiviehiake,Pa(t) =

Pasin(wt). Next, following Church [33] we assume Eq. 4.6 has a solutibthe
form,

by

(4.10)

X(t) = Ag+Agsin(wt + @) + Acoq 2wt + @) (4.11)

The amplitudeA; is of first order and botthy and A, are of second order. In
this solutionAg describes the time-averaged offset of the radius time cufge
represents the amplitude of the second harmonic respoinse #ines the driving
pressure frequency.

Eqg. 4.11 is inserted into Eq. 4.6 and if only the first ordem®iare considered
the well-known differential equation of a harmonic osdilais obtained:

%+ wodX + wh(X) = Pa(t) (4.12)

The solution of Eq. 4.12 gives the amplitu@e which describes the linear reso-
nance curve of the microbubble,

Pa > 1
A= 413
' <pw§R% («1— 92>2+9252> @
where the phase of the linear solution is described by,
0Q
@ = arctan [QZ——l] (4.14)

whereQ representing the non-dimensional driving frequency,

w
Q=— 4.15
o (4.15)

The second order terms from Eqg. 4.6 and Eq. 4.11 give the audpland phase of

the second harmonic response,

Ala 502712 160202 1
Ao =1 [l"' > +—35 2\2 252 (4.16)
2005 a a V(1-4Q2)2 44025
and its phase,
B Brsin(2¢) — Bicoq2¢;)
¢ = arctan [ Brcos2¢1) + Bisin(2¢;) .17
with: i .
_ R0 02y °wW
B = (1—-4Q°) —26Q [1+ > \/E} (4.18)
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dhrw
a

Bi = (1—4Q?) [1+ 295} +256Q (4.19)
While the second harmonic response is important for medhcaging purposes,
here our main interest goes to the “compression-only” biehasf the bubble
which is characterized by the time-averaged offset of theblauradiusAg. In-
serting Eq. 4.11 into Eq. 4.6 gives us:

= A—%z <a - }w2> (4.20)

with a described by Eq. 4.9. For a coated and an uncoated bubbl&ghessions

for Ag are the same. Differences between the average offset oftadcaad an
uncoated bubble result from differences in the resonamcpiéncywy anda. The
derivation of EqQ. 4.20 is based oncantinuousdriving pressure wave amd is
therefore a zero order frequency component. For a drivieggure with a finite
length the offsetAg has a frequency of the order of the reciprocal length of the
driving pressure waveform.

Equation 4.20 shows a linear relationship betwégrand Af. This has two
important consequences. First, sifkgincreases linearly with the amplitude of
the driving pressure pulsi,, Ag increases quadratically witR,. Furthermore,
sinceA; is maximum at the resonance frequen&ywill also be maximum at the
resonance frequency of the bubble. This is shown in Fig.vitiare A; and A
are plotted as a function of the driving frequency both fouanoated bubble and
for a coated bubble with an initial bubble radiusRy=3.8 um. For both bubbles
A; and Ag are normalized with respect to their maximum fundamentspoase
max(A;). For this reason the decrease of the maximum amplitude dfadigmn
of the coated bubble as a result of shell damping with resjetite uncoated
bubble is not visible. The increase of the resonance frexyuand broadening of
the resonance curve that results from the viscoelastid shéte bubble can be
clearly identified. The most striking difference betweeea time-averaged offset
Ay of the uncoated and the coated bubble is the sigAgpf For the uncoated
bubbleAy is positive while for the coated bubble it has a negative &og#. This
remarkable difference results from the differencejsee Eq. 4.9. For an uncoated
bubble the effective surface tension does not vary with lukdmiusR. Therefore
both xeff and {e¢ are zero and Eq. 4.9 reduces to the first term only, which is
always positive. For a coated bubble on the other hand, tlne wda can become
negative for a sufficiently largé.¢+, in which casedg becomes negative, leading
to a decrease of the initial bubble radius during the forcihlis is in agreement
with what was found by Marmottamt al. [12] who showed that a bubble with an
initial bubble radius close to the transition from the etast the buckled regime
(Ro = Rbuckiing) Shows most “compression-only” behavior. This sudden gk
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Figure 4.2: The top figure shows the resonance curve (fundamental res&y) as a
function of driving frequency) of &,=3.8 um radius uncoated gas bubble (blue) and a
coated microbubble (red) as determined from the linearizageigh-Plesset equations.
Both are normalized to their maximum amplitude. The bottaguré shows the corre-
sponding zero order frequency compondy) @s a function of frequency, also normalized
to the corresponding maximum fundamental respoAgg Both for the uncoated bubble
and the coated microbubble the zero order frequency conmp@menaximal at the reso-
nance frequency. The free gas bubble shows a positive eifseteas the coated micro-
bubble shows a negative offset. The parameters used innttudagion werePa = 40 kPa,
Xeff=0.55 N/mks = 3-10 8kg/s andless = 42.2 N/m.

transition is characteristic for a collapsing phosphdlipionolayer [68] and marks
a large positive second derivative of the effective surteresion with respect to
radiuslets.

A few comments on the elasticitye ¢ and its first order correctiofiet¢ are in
order. In the most general form boghand { are a function of the radius R. In
the model by De Jongt al. [63] the bubble shell is assumed to have a constant
elasticity, x = constant. Consequently the first order correction and aléras
of x, 2Ro(dx/0R) = ( is zero. Using a constant elasticity to model a more
complex elastic behavior, results in an effective elastigk s which is different
from an elasticityy (R) that varies with radiusR. As the linear eigenfrequency
wy originates from a first order linearization, the elasti¢ityEq. 4.7 is assumed
to be constantxess. This analysis holds similarly for the description 6fR)
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where we have introduced a constant effective first ordarection {q¢¢ for the
linearized equations. In the analytical solutions presgnh Fig. 4.2xe¢; was
taken to be 0.55 N/m, following Van der Meet al. [41] who deduced the elas-
ticity of phospholipid-coated bubbles from an analysisiné&r resonance curves;
the use ofxes¢ is therefore adequatedes; was taken to be 42.2 N/m. For this
value of (¢t we observe in Eqg. 4.9 and Eq. 4.20 that the zero order offstteof
radius of the bubble at resonance is larger even than therlir@@monic oscillation
amplitude. This indeed results in the very asymmetric &tiime curves similar
to the curves found experimentally by Marmottatal. [12] and by De Jonget
al. [10].

Let us reconsider the radius-time curve of Fig. 4.1C. If we neew the radius-
time curve, not as a set of bubble expansions and compresgamn a reference
resting radiusRy, but instead we recover the radius-time curve from a sugerpo
tion of Ry, a negative zero-order offséy, and a linear oscillatiod\;, we obtain
the picture plotted in Fig. 4.3. As the frequencyfgfis an order lower than that of
A1, a segmentation in the frequency domain can be performedsfbtraction of
the resting radiu&y. This results in the temporal evolution 8 andAq, Fig. 4.3
to the right. Note that strictly speakifg analyzed in this way may contain higher
order harmonics of the form given in Eq. 4.16, which we wiljlezt here. Details
of the Fourier segmentation will be given in the experimesgation.

Equation 4.20 has shown that the zero-order offsgts negative for suffi-
ciently largeess and that the maximum “compression-only” behavior is recov-
ered for a maximurnd;. It can also be shown that the driving frequency has very
little effect on the relation betweefy and A; when “compression-only” behav-
ior is observed. In this cas&t is large as to make sufficiently large and the
contribution ofw is negligible. Something that is less obvious from the equat
is that the “compression-only” behavior is most pronounfmedhe smallest bub-
bles. This finding will be confirmed by full numerical simuéats in the following
section and is in agreement with the recent observationg@hpression-only”
behavior of phospholipid-coated Sonovue and BR-14 by Dg doal.[10].

4.3 Numerical Model

From the analytical solutions fd%, presented in the previous section it was ob-
served that “compression-only” behavior of phospholipidted microbubbles is
predominately determined by the initial increase of thdl gasticity with bubble
oscillation amplitudeles = 2Ryd Xet1/0R. Earlier models such as proposed by
De Jonget al. [63] assume a constant shell elasticity and are therefablaro ex-
plain such behavior. Equation.4.2 is valid for small buldieillation amplitudes
only. For larger bubble oscillation amplitudes the effeetsurface tension as pre-
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Figure 4.3: The radius time curve presented in Fig. 4.1C can be decordpogetwo
components. The fundamental respoAsand a low frequency componeiy§ expressing
the “compression-only” behavior of the bubble. The frequyenf A is of the order of the
reciprocal of the length of the driving pressure pulse.

dicted by Eq. 4.2 grows indefinitely witR and could become negative. Therefore
in this chapter we will use the model proposed by Marmotérdl. [12] where
the shell elasticity is assumed to change with bubble asicih amplitude and the
effective surface tension is bound between= 0 N/m ando = 0.072 N/m.

As a first approximation Marmottaet al. assumed three regimes fo(R), one
elastic regime, for small bubble oscillations, where theative surface tension
is described in the spirit of the model of De Joegal. [63] and two regimes
where the shell elasticity is assumed to be zere 0 N/m. The shell elasticity
X in the elastic regime is assumed to be fixed and the funai@®) as a whole
is assumed to be same for all bubbles independent of thalibiibble radius.
Therefore this model introduces only one additional patames compared to the
model proposed by De Jorej al. [63]: the initial surface tension of the bubble
0(Rp), which directly relates to the phospholipid concentratiorthe interface of
the bubble.

In the model described by Marmottaettal. o(R) is defined as a piecewise affine
function, implying that{ (R) is zero except at the two transition poird$R) =0
ando(R) = owater, Where this quantity is not defined. As already pointed out by
Marmottantet al. [12], this is a practical idealization of the shell respomdech
is smoother in reality. Furthermore, the weakly nonlineaalgsis presented in
the previous section has shown tl@ats and thus{(R) is of prime importance
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4. “COMPRESSION-ONLY” BEHAVIOR

to explain “compression-only” behavior. In order to hay@R) defined for allR
we propose to introduce two quadratic crossover functigi(®) andY>(R) in the
two transition regions as depicted in Fig. 4.4. In order fathithe effective surface
tension and the shell elasticity to remain continuous abvlogransition points the
two quadratic functions at the two different transitionsw@dd each satisfy a set of
boundary conditions. For the transition from the so caleekling’ regime to the
‘elastic’ regime the functiofY; (R) should be chosen such thaR) satisfies,

0(Rsuck) = ON/m
00 (Reuck)/0R = ON/m? (4.21)
00(Rejas)/OR = 2Xmax/Ro N/m2

where Rgyck marks the transition to the buckling regime aRgss to the elas-
tic regime. In a separate experiment shown in chapter 3 asmencurves of
phospholipid-coated BR-14 microbubbles were measuredtegraely low driv-
ing pressures. This allowed measurements of the resonaneoesaf bubble in a
purely elastic state as the oscillations were confined t¢elhastic’ regime. In this
way themaximumshell elasticity in the elastic regime could be determined a
was foundymax = 2.5 N/m. For radii betweerRg,ck andRgjas the shell elasticity
is determined byr; as shown in Fig. 4.4. To limit the number of free parameters of
the model we have assumed the transition from the 'buckliegime to the ’elas-
tic’ regime and from the ’elastic’ regime to the 'rupturedgime are the same. The
boundary condition that should be satisfied for this lagiditeon are therefore,

30 (Reas2)/OR = 2Xmax/Ro N/m? (4.22)
The end of the elastic regime is now marked{y,s2and the start of the 'ruptured’

regime is marked byRqee. From the boundary conditions we find the following
quadratic functions.

1 R 2 .
Y1 = (¢ < - 1> If Reuck< R< Rejas (4.23)
2 RBuck
1 R Reree)?
Y2 = Owater— EZ <RB ; - RBreE> iIf Relas2< R< Reree (4.24)
uc uc
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With these two new quadratic functions the final functiorodR — AR) becomes,

(0 if (R—AR) < Rayck
Y1(R—AR) if Reuok < (R—AR) < Relas
0(R—AR) = zxmax((R;fR> - 1) if Relas< (R—AR) < Remsz  (4.25)
Y2(R—AR) if Relas2< (R— AR) < Reree
Owater if (R—AR) > Reree

Here AR defines the shift of the (R) curve with respect tdy, i.e. AR defines
0 (Ry).

In the original modell was undefined in the two transition regions. With the
introduction of the two quadratic function the constgntan be defined. This
implies that another shell parameter must be introducedweder, since in the
original model{ was undefined and in fact was determined by the step size of
the numerical code, the original model could also be consttlas having already
incorporated (in an uncontrolled way) tideshell parameter. Note that onge
0(Rp) andxmaxare defined, the parameteRg,ck, Relas, Relasz@andRgrecare fixed
and are therefore not to be considered free shell paramé&tarthermore, as in the
original model we assume thatR) is valid for all bubble radii.

Since xmax is known and the same for all bubbles, the only parametetsatha
fect the “compression-only” behavior of bubbles and thatary from bubble to

L

Free Gas Bubble

0.072

O(R)

e — ~ N
RBuck RO R Elas REIos2 R

Free

Figure 4.4: In the model of Marmottargt al. [12] the second derivative af (R) with
respect tR is undefined in the transitions from the buckling regime ®¢lastic regime,
and from the elastic regime to the free gas bubble regime.ofi@ct this, we propose to
expand the original model with two quadratic functiofisandY that describe the two
transition points.
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4. “COMPRESSION-ONLY” BEHAVIOR

bubble are ando (Ry). To investigate the effect of these two free parameters and
the initial bubble radiugy on the “compression-only” behavior of phospholipid-
coated microbubbles we have conducted a parameter studhe déit numerical
model described by Eq. 4.1 whet&R) is described by Eq. 4.25. The results are
presented in Fig. 4.5. Through a variation of the drivingsptege amplitude the
zero order offsefy, i.e. the “compression-only” behavior, was determined as a
function of the oscillation amplitudAf. By varying both{ ando(Rp) indepen-
dently for a bubble with an initial bubble radil® = 1.2 um the influence of
these two parameters on the relation betw&gandA; was determined. Finally,
also the effect of the initial bubble radil& on the “compression-only” behav-
ior was investigated by varyinBp. In the weakly nonlinear analysis it was found
that Ay/A? is nearly independent of the driving pressure frequency.tiweefore
chose the frequency close to resonance, as to promote Iagéwe oscillations
to cover a reasonable rangeAf. We used a frequency of 4 MHz in the case of
the 1.2um bubble and 2 MHz and 1 MHz for the 2/8n and 3.4um bubble,
respectively. Similarly the shell viscositg does not affect the quantit&o/Af
and a difference in the shell viscosity for different bulshileerefore not alters the
results presented in Fig. 4.5. In the simulations preseintédg. 4.5 a shell vis-
cosity ofks = 1-107% kg/s was taken for the 1,2m bubble and the 2.8m and
3.4 um bubble were assumed to have a shell viscositysof= 1-10-8 kg/s and

Ks = 2.5-1078 kg/s respectively, in agreement with the values found by déam
Meeret al. [41] for the same type of bubbles. To determiefrom the individual
radius-time curve, the zero-order frequencies were fiteréitl out with an ideal
high-pass filter with a cut-off frequency of 1 MHz. The reswtradius time curve
was normalized to the initial bubble radits. Note again that strictly speaking
the A; defined here differs slightly from th&; of the analytical solutions, since
the numerical data may contain higher harmonics. To deterdy, the initial
bubble radiudRy is first subtracted from the full radius time curié). After the
resulting curve is normalized with the initial bubble raslRy we apply an ideal
low-pass filter with a cut-off frequency of 1 MHz to the curvEhe amplitude of
the resulting low frequency offset shown in Fig. 4.3 is dafiasAy.

As was found from the weakly nonlinear analysis presentéddrprevious sec-
tion, we find from the numerical simulations using the fulhmerical model that
the zero-order frequency componeky is indeed negative and decreases for in-
creasing oscillation amplitudd;. Furthermore, from Fig. 4.5B we find that the
“compression-only” behavior slightly increases for irasieg { however the in-
crease is limited even for a two order of magnitude incredsé d his confirms
that the relation betweel, andA? depends on an effectida st = ([ {(R)dR)/([dR).
{et1 IS less dependent on the initi§(Ry) but depends both on the size of the
regime of{ and the value of itself. This is confirmed by the decrease of the
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Figure 4.5: A parameter study of the “compression-only” behavior of ggtwlipid-
coated microbubbles. Three parameters were vafi€B), o(Ry) (D) andRy (E) which
resulted in different relations foo(R) as shown in the two left figures A and C. The
“compression-only” behavior was expressed as the relehn'evweem{ andAy, whereA%
was varied by changing the driving pressure amplitude witixead driving frequency of
4 MHz. The right top figure B shows the “compression-only” &ebr for three different
values of¢ with 0(Ry) = 0 N/m andRy = 1.2 um. The middle right figure D) shows
how the “compression-only” behavior changes for differe(f®) with { = 5 kN/m and
Ry = 1.2 um fixed. Finally in the bottom figure, E) the “compressionyditdehavior for
differently sized bubbles is showd (= 5 kN/m, o(Ry) = 0 N/m). In all figures it was
assumed that the maximum shell elasticity equals = 2.5 N/m.
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4. “COMPRESSION-ONLY” BEHAVIOR

“compression-only” behavior that we observe for largérut also by the strong
dependency of théy/A? on the initial surface tensioa(Ry). In Fig. 4.5D we
observe that for a bubble with an initial surface tensidiRy) close to the buck-
ling regimeAq /A2 is smaller, i.e. we observe more “compression-only” betravi
For a bubble with a larger initial surface tensioriRy) the region with a large
positive  is reached only for larger oscillation amplitudes. Funthere the tran-
sition from the elastic regime to the ruptured regime is rediky a negativé and

is reached for much smaller oscillation amplitudes, exyjta why the minimum
Ao reached for bubbles with a large(Rp) is higher. For an initial surface ten-
siono(Ry) sufficiently largeo (Ry) > 0.036 N/m (=0.072/2) we may even observe
"expansion only” instead of “compression-only” behavisee also experimental
evidence in Marmottangét al. [12]. Finally, we observe that the full numerical
simulations predict that smaller bubbles show more “cosgion-only” behavior
in agreement with recent observations by De Jenal. [10].

4.4 Experimental

From the weakly nonlinear analysis and the numerical calmris with the full
shell-buckling model we found that the amount of “compressinly” behavior
that a microbubble exhibits depends on the initial bubbikusRy, the initial sur-
face tensioro(Ry) and the amplitude of oscillatioA;. The other parameters of
the model, the shell elasticity, shell viscosity, and thigidg pressure amplitude
and frequency are all included Ay. The relation betweeAy andA; is unaltered
by these parameters. To investigate how and if these thealrénhdings can be
confirmed experimentally we recorded the radial dynamic4ofndividual mi-
crobubbles with the Brandaris ultra-high speed camerad39 function of both
the driving pressure frequency and of the driving pressuisep To study purely
the effect of “compression-only” on the bubble dynamics, abble under study
was isolated and located away from neighboring objectdgwalibbles) by means
of optical tweezers.

4.4.1 Experimental setup

BR-14 (Bracco S.A., Geneva, Switzerland) contrast agentahubbles were in-
jected in an OptiCe@ chamber (Nunt™). The chamber was positioned on top
of a custom-built water tank, see Fig. 4.6. The water tankaioed a light fiber
and an ultrasound transducer (PA168, Precision Acousticagedle hydrophone
(HPMO02/1, Precision Acoustics) replacing the OptiCell waed to align the ul-
trasound with the focus of the objective. A XYZ-stage coltdab the OptiCell
position separately from the watertank in order to keep ttnesound aligned with
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the objective. For accurate control of the distance betwebubble and the wall
a motorized stage (M-110.2DG, PI) was used.

The ultra high-speed Brandaris 128 camera [39] was coupleal get of op-
tical tweezers. A dichroic mirror (CVI laser) reflected thdrared laser beam
(A =1064 nm) into the back aperture of the objective (LUMPLFQAW, Olym-
pus). Individual bubbles were trapped in the low intenségion of a Laguerre-
Gaussian beam. The imaging and trapping of the microbubble performed
through the same objective. The dichroic mirror transmdittee visible light used
for imaging. Details of the optical tweezers setup couptetthé Brandaris camera
can be found in chapter 6.

The ultrasound pulses were generated by an arbitrary wawefenerator (8026,
Tabor Electronics). The signal was amplified (ENI, Model B%@th 50 Q input
impedance, Rochester, NY) and sent to the ultrasound tassdThe transducer
was calibrated prior to the experiments in a separate wat&rdver a broad range

To Brandaris Camera

To Optical Tweezer Setup
— Dichroic Mirror

Objective

Opti\Cell

/| Hydrophone

AWG
|
Amplifier

=

transducer . [Tlumination

Figure 4.6: A schematic overview of the experimental setup. Single afiubbles were
investigated with the combined Brandaris 128 camera anidadtveezers setup. The
driving waveform produced by an arbitrary waveform germraias amplified and trans-
mitted by a focused transducer.
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4. “COMPRESSION-ONLY” BEHAVIOR

of frequencies (0.75-5 MHz) and ultrasound pressures. Titieg pressure wave-
form had a length of 10 cycles and was apodized with a 3 cyctenldg window.
One experiment consisted okB movies of 128 frames. The bubble dynamics
of the very same bubble was recorded while scanning theeapflequency at
constant pressure in each of the 12 movies.

4.4.2 Data analysis

The images from the high-speed movies were analyzed @fwiith Matlab (The
Mathworks, Natick, MA). The radius of the bubble as a functad time R(t) was
determined from each image sequence through a semi-automigiimum cost
algorithm [41]. A typical radius-time curve is shown in F§7A. The radiuR
was normalized to the initial bubble radiRgs. The linear oscillation amplitudd;
was determined from the individual radius-time curve tigtodiltering (B) with

a step function shaped high-pass filter with a cut-off freqyeof 1 MHz. To
determineAy, the initial bubble radiu®, was first subtracted from the full radius-
time curveR(t), then normalized tdzy. A step function shaped low-pass filter
with a cut-off frequency of 1 MHz was applied to the curve. Hneplitude of the
resulting low frequency offset shown in Fig. 4.7E is definedga

45 Results

In total, 324 resonance curves at different driving pressamplitudes were ob-
tained for 45 individual microbubbles. In 24% of the expesints Ag was found
to be positive, i.e. 76% of the experiments showed a negaitheaverage offset.
Furthermore the amount of compression-only behavior waermvked to vary for
different bubbles, even for bubbles with the same size.

Figure 4.8 shows the linear resonance curves of two mictadbabboth having
an initial bubble radius of 2.3m. A; and the correspondingy are plotted as a
function of the driving frequency. Both bubbles were exctitgth the same driving
pressure amplitudes and driving pressure frequenciesdiiieg pressure ampli-
tude for both resonance curves shown in Fig. 4.8 was 18.5\WBabserve that the
bubbles have the same resonance frequency of 2.5 MHz, wiliowing Eq. 4.7
indicates that the bubbles have the same effective elgsftigi:. We can identify a
good agreement between the experimental data and thetibablieear resonance
curve based oiyetf = 0.55 N/m. We also observe for both bubbles that the time
average offsefy is minimal at the resonance frequency, in agreement with our
earlier findings in Eqg. 4.20. On the other hand, there is &wifice in the ampli-
tude of Ag between the two bubbles, one of them shows less “compressigh
behavior. To explain the difference between the two bubiblegxperimental data
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Figure 4.7: A) An example of a radius time curve of a Juén radius phospholipid-coated
bubble recorded with the ultra-high speed Brandaris cani®rahows the corresponding
Fourier transform. The Fourier transform besides a zederaromponent from the initial
bubble radiusxy also shows another low frequency component which is assakcigith
the “compression-only” behavior of the microbubble. Theiahresponse can be decom-
posed into a fundamental/linear response (C,D) and a loguéecy component of the
order of the length of the driving pressure pulse (E,F). Rerghospholipid-coated micro-
bubble the low frequency component has a negative amplitdnigh is contrary to what
we observe for the free gas bubble where it is positive.
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is fitted to the two theoretical predictions 8 based on Eg. 4.20. From the two
fitted curves we find that the difference between the two leigsults from a dif-
ference in the second derivative of the effective surfansite with respect t&,
{et1. FOr the bubble that shows most “compression-only” we fgld = 91 N/m
and for the othefer = 41 N/m.

If we relate this finding to the model proposed by Marmotttral. where it is
assumed that all microbubbles follow the same relationof(R) a difference in
{eff can only result from a difference in the initial phosphdligurface concen-
tration of the bubble, i.e. a difference a(Ry). For a bubble with an initial phos-
pholipid surface concentration close to the saturatiorcentration of the bubble
wall, i.e. o(Ry) ~ 0 N/m, the shell elasticity will vary strongly with the bulebl
radiusR. Already for small amplitudes of oscillation the bubble lvgib from the
elastic regime with a shell elasticity of arougydR) = 2.5 N/m into the buckled
regime withx (R) = 0 N/m. This rapid change of the shell elasticity correspdnds
alargedet = 2Rod Xet1/0R. The bubble with the smallef ¢ has an initial phos-
pholipid surface concentration that is lower. The bubbkreafore remains in the
elastic regime for larger amplitudes of oscillation. As aulethe shell elasticity

15 2 2.5 3 35 4
f (MHz)

Figure 4.8: Experimentally determined resonance curve for two 3 radius bubbles
with the two corresponding time average offs&is Both Ag andA; are normalized on the
maximum value ofA;. Though the resonance frequency and thus the shell etgstics
the same for both bubbles the time average offset is diffédogrboth, as in Fig. 4.9. The
experimental data is in good agreement with the analyjicallculated resonance curves
which are based og(R) = 0.55 N/m determined by Van der Meet al. [41]. The two
theoretical predictions fohy are based on two different values @4+, {eff = 91 N/m
(blue squares) andl.tt = 41 N/m (red circles).
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will not vary strong with bubble radius effectively redugigef f.

Figure 4.9 shows the negative time average offsgplotted as a function of
Af. The experimental data shown in Fig. 4.9 is obtained atrdiffedriving pres-
sure amplitudes and frequencies. For each of the two bulatleke different
resonance curves are observed to collapse onto each otiveinglthe same rela-
tion betweeny andAZ. This confirms our previous findings that both the driving
pressure amplitude and frequency do not change the relagitmeenAg andAﬁ.
The shape of the relation betwefp andA% is the same as was found from the
numerical simulations, see Fig. 4.5D. As mentioned befibre flattening of the
curve for increasingd; results from the transition from the elastic regime to the
ruptured regime. For the two different bubbles we obserag tloth the change
of the gradient and the minimumyy are different. From the numerical simula-
tions we found thaf was a parameter of relatively little importance, and tremef
the difference between the two curves can only be explairyed tifference in
0(Rp). To fit the full model to the experimental data therefore rezputhe vari-

o
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< -0.02f
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-0.03}
-0.04}
0 0.005 0.01 0.015

Figure 4.9: Two different microbubbles with the same radRis = 2.3 um show differ-
ent “compression-only” behavior though the experimenghdvas obtained for similar
driving pressure amplitudes and frequencies. Even thdughio curves look qualitative
the same, quantitatively they are different. The expertadegata of both bubbles is cor-
rectly described by a single parameter fitadfRy) of the full numerical model. The best
fit through the red circles corresponds toéRy) = 0.008 N/m and for the blue crosses it
is 0(Rp) = 0.02 N/m. In the full numerical simulations the other shellgraeters were
taken from the literature to ey = 1-108kg/s,x = 2.5N/m, and = 5 kN/m. The
driving pressure frequency was fixed on 2 MHz and the drivirgsgure amplitude was
varied.
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Figure 4.10: According to the numerical model the amount of “compressioly” be-
havior exhibited by a phospholipid-coated microbubbleiricted. The initial condition
of the phospholipid shellg(Ry) and the initial bubble radiuRy determine the maximal
time average offsefy a bubble can show in itR(t) curve. This hypothesis is confirmed
by the clear boundary we observe on the left/bottom flankigidtattered plot whery, is
plotted as a function o&? for all experimental data. This boundary is correctly dite
by the red line corresponding to the numerically calculagdation betweery andAf for

a bubble with an initial bubble radid® = 1.2um (smallest bubble in the experimental
data) anao(Ry) = 0 N/m.

ation of only one parameter. A least-squares fits of the fuddet to the two
experimental data sets are shown in Fig. 4.9. The data seispanding to the
bubble showing most “compression-only” behavior is begtditwith a value for
0(Rp) =0.008 N/m, the other data set is shown to nicely fit with the nucaér
model foro(Ry) = 0.02 N/m. The other shell parameters of the numerical model
were taken as before from the literatuwg = 1108 kg/s, x = 2.5 N/m and

{ = 5KkN/m.

In Fig. 4.10 all experimental data is shown for all bubbleshéné we plotAg
as a function ofA2. The smallest initial bubble radius in the experimentahdat
1.2 um and the largest bubble has a radius of @M. The shape of the scattered
experimental data is determined by the limiting number ¢fieso (Ry) can have.
The smallest value foo (Ry is 0 N/m for the smallest bubble size and determines
the maximum amount of “compression-only” behavior. Thisesfirmed by the
numerical simulation of the full model of Marmottaet al. for o(Ry) = 0 N/m
andRy = 1.2um, which was shown before in Fig. 4.5 and now shown in Fig..4.10
The numerical simulation confines the left/bottom side efélkperimental data.

70



4.6 DISCUSSION

4.6 Discussion

From the results presented here it is clear that the shedti@ty of the phos-
pholipid shell varies with bubble oscillation amplitudeo &xplain the observed
“compression-only” behavior the shell elasticity of theatadd microbubble will
first rapidly increase with bubble radius and then decreasthe bubble shell
reaches the ruptured regime. This finding confirms the assom@f Marmottant
et al. that the behavior of a phospholipid-coated microbubbléllatog in the
MHz frequency range is similar to the static behavior of inadipid monolayers
[64-68].

The rapid increase of the shell elasticity with increasingtde radius is a result
of a collapse of the phospholipid monolayer [68]. The cakpf the monolayer
is a result of the compression of a saturated layer of phdigiti® with the highest
possible packing. If the monolayer is compressed beyosdthint, 3D structures
of phospholipids are formed on the surface of the monolayars phenomenon
is termed buckling of the monolayer and can be observed inosgopic detail as
shown in Fig. 4.1A. If the monolayer is in the buckled state dffective surface
tension is zero (or at least very close to zero) and does mygtwith bubble ra-
dius. Once the bubble surface is expanded beyond its bustdég] the monolayer
extends into an elastic state where the effective surfarstae increases with bub-
ble radius as a result of a decrease of the phospholipidsotnation. The surface
elasticity is described by the change of the effective serfansion with the bubble
radius. The buckling point of the phospholipid monolayerksdhe rapid increase
of the shell elasticity.

The effective surface tension cannot increase indefinaslyhe phospholipid
concentration becomes so small that the bubble ruptureshenghospholipids
segregate in lipid islands on the interface and the surixesidn recovers to that
of the water/air interfacedd = 0.072 N/m). The decrease of the effective shell
elasticity with bubble radius for larger oscillation antpties is a result of this
upper limit to the effective surface tension. Thereforesthell elasticity effectively
decreases to zero for larger bubble radius.

For a bubble with a known resonance frequency the “compmmessily” behav-
ior of a phospholipid microbubble quantified By/A?, provides a direct measure
of the initial state of the phospholipid shell. Furthermassuming the resonance
frequency of the bubble is known the relation betwégnand A% for different
oscillation amplitudesA; can be fitted to the full numerical model proposed by
Marmottantet al. with the variation of a single parametenRy). This fit will
therefore provide an accurate measure of the initial sarfansion of the bubble.
This provides a quantitative way to dynamically measuregtiaspholipid concen-
tration on the interface of the bubble. This quantitativierimation deduced from
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the “compression-only” behavior of a phospholipid-coataidrobubble will also
help to predict other nonlinear properties of these micbbtes. The enhanced
subharmonic behavior shown by phospholipid-coated midibles for example
is shown to also depend strongly on the initial surface tenef the phospholipid
shell of the microbubbler(Ry) see chapter 5.

4.7 Conclusions

In this paper we have investigated the negative time avesfiget of the bubble
radius of acoustically driven oscillating phospholipiolated microbubbles, often
referred to as “compression-only” behavior. We show thatrddial dynamics of
the bubble can be considered as a superposition of a linspomee at the fun-
damental driving frequency and a second order nonlineaifleguency response
that describes the “compression-only” behavior of the beib¥/e have linearized
the model proposed by Marmottaet al. [12] up to second order to show that
the negative time average offset results from an initiall sasticity that rapidly
increases with bubble radius. This is known to happen fdically collapsing
phospholipid monolayers [68]. We propose to quantify thenipression-only”
behavior of a microbubble according to its second order @iwerage offset am-
plitude Ag. From the linearized equations it follows that the negadiivee average
offsetAy is strongly correlated with the fundamental oscillationptitnde AZ. We
also show both experimentally and from numerical simuketithat for larger os-
cillation amplitudesA? the negative time average offs&s reaches a plateau level.
This effect is also described by the model proposed by Maanbét al. when
the break up tension as proposed in this model is settq = 0.072 N/m, i.e.
the surface tension of water. The saturation is shown tdtrésun a decrease
of the shell elasticity for larger oscillation amplitudefien the maximum effec-
tive surface tension/break-up tension is reached for lafase concentrations of
phospholipids. Finally, we show through numerical simolad that the relation
betweenA; andAZ in the model proposed by Marmottaett al. is predominately
determined by the initial effective surface tension of thegpholipid shelb (Ry).
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Subharmonic behavior of
phospholipid-coated
microbubbles!?

Coated microbubbles, unlike tissue are able to scatter d@ubharmonically.
Therefore, the subharmonic behavior of coated microbiubbn be used to en-
hance the contrast in ultrasound contrast imaging. Thecadly, a threshold am-
plitude of the driving pressure can be calculated above twBigbharmonic oscil-
lations of microbubbles are initiated. Interestingly, kar experimental studies
on coated microbubbles demonstrated that the thresholthése bubbles is much
lower than predicted by the traditional linear viscoelasshell models. This paper
presents an experimental study on the subharmonic behal/tifferently sized in-
dividual phospholipid-coated microbubbles. The radidblsarmonic response of
the microbubbles was recorded with the Brandaris ultrabépieed camera as a
function of both the amplitude and the frequency of the dg\pulse. Threshold
pressures for subharmonic generation as low as 5 kPa weredfoear a driving
frequency equal to twice the resonance frequency of thelbul#n explanation
for this low threshold pressure is provided by the shell bogkmodel proposed
by Marmottant et al. Marmottant et al. [JASEL8(6), 2005]. It is shown that
the change in the elasticity of the bubble shell as a functibbubble radius as
proposed in this model, enhances the subharmonic behakiteanicrobubbles.

1submitted as: Jeroen Sijl, Benjamin Dollet, Marlies OvédeeValeria Garbin, Timo Rozendal,
Nico de Jong, Detlef Lohse and Michel Versluis, Subharmdo@bavior of phospholipid-coated
ultrasound contrast agent microbubbles, J. Acoust. Soc. Am

2The numerical simulations leading to the understandinglaméhfluence of the shell parameters
on the subharmonic behavior are part of this thesis. Thererpatal work and the weakly nonlinear
analysis were performed by Jeroen Sijl.
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5. SUBHARMONIC BEHAVIOR

5.1 Introduction

Microbubbles scatter ultrasound effectively and nonliygavhich makes them
ideal contrast agents for medical ultrasound imaging. Tibles are coated with
a protein, lipid or polymer layer and they are filled with airam inert gas. Ultra-
sound contrast agents are clinically used on a daily basisst@lize blood flow
at the microvascular level to image organ perfusion in eeditter, kidney and the
myocardium [70]. Contrast enhancement is expressed asatibebetween the re-
sponse of microbubbles in the blood pool and that of the sading tissue, termed
the contrast-to-tissue ratio (CTR). Improvement of the ddRcurrent contrast
imaging modalities such as power modulation [62] and pulsersion imaging
[5] is accomplished by exploiting the nonlinear responstefmicrobubbles, pre-
dominantly at the second harmonic frequency of the driviegjdiency [71, 72].
The typical enhancement of the CTR in nonlinear harmonigingis 40 dB. For
deep tissue imaging, however, the contrast enhancemémitisd by the nonlinear
propagation of the ultrasound. Linear scattering of th@seédharmonic compo-
nent of the driving pulse interferes with the bubble’s secbarmonic response.
Non-linear propagation of the ultrasound is limited on ttireeohand only to higher
harmonics of the driving frequency. For this reason the aubbnic response of
the bubbles at half the driving frequency has received as=d interest for ul-
trasound contrast imaging [7]. Moreover the subharmorspaese is attenuated
less than both the fundamental and higher harmonic bubbj®mnses. Given the
transducer bandwidth limitations, subharmonic imagingaicularly interesting
for high frequency imaging applications [73, 74].

Subharmonic bubble responses were first described folgpesperimental ob-
servations by Esche [75] already in 1952. Additional experital work has been
conducted to investigate the nature of this nonlinear keh4v6, 77] followed
by several theoretical descriptions of subharmonic bemafibubbles in a sound
field [42, 56, 57, 78, 79]. Prosperetti [42] showed througheakly nonlinear
analysis of the Rayleigh-Plesset equation that the suldrdcnbehavior of bub-
bles can only exist if the driving pressure amplitude exseethreshold pressure.
It was found that the threshold pressure for subharmoni@wehis minimum
when the bubble is driven at twice its resonance frequeteyas also shown that
the threshold pressure increases for increased damping$420].

The viscoelastic shell of ultrasound contrast agent migobkes is known to
increase the damping considerably [36, 41, 63]. Therefibrieas always been
suggested that the threshold pressure to excite subharrhehavior for coated
microbubbles should be increased. Shamtal. [44] studied the subharmonic be-
havior of coated bubbles following the analysis of Prosiigé2] and confirmed,
by using a purelyinear viscoelastic shell model as by De Jong [63], Church [33],
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5.2 THEORY

or Hoff [35], that indeed the threshold for subharmonic gatien is increased as
aresult of the increased damping. There exists, howeveergrental evidence in
the literature showing that for both the albumin-coatedtizmt agents Optiséh
and Albune® and the phospholipid-coated contrast agent Son8Vtiee thresh-
old pressure to excite subharmonic behavior is lower thanadhuncoated bubbles
[7, 43—49]. Other work reports no significant change in theghold pressure,
neither for albumin-coated bubbles [81] nor for the phodipitbcoated Definity"
contrast agent microbubbles [82].

Here, we show that a lower threshold for the initiation oftsafmonic behavior
of phospholipid-coated microbubbles can be explained thighmodel proposed
by Marmottantet al. [12]. Similarly to Shankaet al. [44] we employ a weakly
nonlinear analysis along the earlier work on uncoated lasbby Prosperetti [42],
and instead of using a purelipear viscoelastic model, we assume the shell elas-
ticity of the phospholipid shell to vary with the bubble rasiR. It is shown that the
rapid change in the elasticity of the bubble shell as proppas¢he model of Mar-
mottantet al, is responsible for the enhancement of the nonlinear suidrdc
behavior of phospholipid-coated ultrasound contrast tigpéerobubbles. Further-
more we have used ultrahigh-speed imaging with the Brasdainera [39] to
characterize the subharmonic behavior of individual nibatibles from the exper-
imental agent BR-14, which contains microbubbles with aspholipid shell and
a perfluorocarbon gas core (Bracco Research S.A., Geneltae8and). We have
investigated the full subharmonic resonance and thredbeth@vior of individual
coated microbubbles for small acoustic pressures andndripulse frequencies
near two times the resonance frequency of the microbubbles.

Details of the model and the weakly nonlinear analysis waldresented in
Sec. 5.2. The experimental setup is discussed in Sec. 58edn5.4 the experi-
mental results are presented and compared with the full noahenodel of Mar-
mottantet al.. Finally we end with a discussion in Sec. 5.5 and our conghssin
Sec. 5.6.

5.2 Theory

5.2.1 Analytical solution

The most general description of the dynamics of phospliblipated microbub-
bles is given by,

p (RF"H §R2> - <P°+ ZUF(eoRO)> <%>3 <l_ ¥{> (5.1)

20(R) R R
= —Ag —4Ksms — P —P()
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5. SUBHARMONIC BEHAVIOR

Here, the radius of the bubble is describedRft) and its velocity and acceleration
are given byR andR, respectively. The initial bubble radius is given By and
the ambient pressure B. The liquid viscosity isu = 102 Pas, its density

p = 10° kg/m?® and the speed of sound in the liquictis= 1500 m/s. The applied
acoustic pressure pulse is describedHRgy). We approximate the microbubble
oscillations as adiabatic. Therefore we assume the pgigtrexponentk to be
the ratio of the specific heats of the gas inside the bubble.tHeoexperimental
agent BR-14 the gas core consists of perfluorocarbon gaskwiiC,/C, = 1.07
[12, 41]. Thermal damping is accounted for by a slightly @asing the liquid
viscosity = 2-10°2 Pa s. The effect of the phospholipid coating is taken into
account through a shell viscosikg kg/s and an effective surface tension which is
assumed to depend on the concentration of phospholipidamets on the surface
of the bubble. Consequently, the surface tension dependbeoradius of the
bubbleg(R) (N/m). In earlier models [35, 63] the effective surface tensvas
assumed to increase linearly with the bubble radm@®) = 2x(R/Ro—1), where

X represents the shell elasticity. Based on the static ptiepeof phospholipid
monolayers, Marmottargt al. [12] introduced a relation foo (R) where also the
shell elasticity is varied with bubble radiggR).

Solving Eq. 5.1 numerically for a certain relatioa(R), provides a specific
radius time curveR(t), with possibly subharmonic oscillations. Depending on the
relation o(R) the subharmonic content of the numerically calculatedustime
curve changes. To investigate the effectadR) on the subharmonic response,
Eq. 5.1 can be solved numerically for different functian®).

However to come to a more fundamental understanding of tleetedf o(R)
on the subharmonic behavior of ultrasound contrast ageigtsisightful to solve
Eq. 5.1 analytically. Hereto we perform a weakly nonlineaalgsis of Eqg. 5.1
where we follow the approach of Prosperetti [42, 44, 56, 80l principal steps
of the weakly nonlinear analysis will be repeated here.

As a most general approximation, we assume that, for smaillai®ns around
Ro, 0(R) can be described as a second order Taylor expansion:

2
0(R) = 0(Ro) + 2Xett (% — 1> + %Zeff <% - 1> (5.2)

where we have defined for any functioriR)

~1_0d0(R
Xert = SRo=— ‘Ro (5.3)
0%0(R
leti = R} ;REZ)‘RO (5.4
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Xetf (N/m) andlets (N/m) are the effective shell elasticity and the derivaibfe
the effective shell elasticity around the equilibrium [d®3. In the model of Mar-
mottantet al. x(R) and{(R) depend on the bubble radi&s The effective shell
elasticity xetf and {ef¢ defined in Eq. 5.3 and Eq. 5.4 are constants. The shell
elasticity as determined by Van der Mastral. [41] for BR-14 microbubbles was
assumed to be independent of the bubble raRiasd is therefore equal ut+.

We can show that the results of the weakly nonlinear anafygisented in the
following are independent of the choice of the initial sagfaensiono(Rp). To
simplify the calculations presented here we thereforerassm(Ry) to be zero.
We insert Eg. 5.2 into Eq. 5.1 and assume the raBia$ the bubble is correctly
described by

R = Ry(1+Xx), (5.5)

wherex is small. Following Prosperetti [42] we define a dimensiealémescale,
frequency and driving pressure amplitude:

_ |kt _ P _ R
T‘\/:Ro’ OO—ROQ\/:O, = o (5.6)

whereQ is the dimensional driving frequency aRglis the driving pressure ampli-
tude. Because we assume the surface tension at (Bs} to be zero, the pressure
inside the bubble is equal .

Inserting all these relations into Eq. 5.1, performing aeseexpansion ix, and
ignoring third and higher order terms we obtain

2 2
% +whx = —:—23 (%) + apx® — Excog W) — Zb% +&coqwr)  (5.7)
where we have assumed the driving pressure to be describ&dt By P.Po) =
coqwr). Eq. 5.7 is identical to Eq. (4) from Prosperetti [42] excépt the
third order terms which we neglect since we are only intece#t the solution of
this equation forw ~ 2wy, for which the second-order terms are sufficient [42].
Furthermore we have defined

AXett
2 — 3K + 2= 5.8
Wy PoRs (5.8)
2u 2Ks 3K [Py
b= + +—/—= 5.9
RovDP | RevoRy | 2c\/ p (5:9)
9 ({ett — 8Xett)
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5. SUBHARMONIC BEHAVIOR

whereb describes the non-dimensional damping of the system. Matelie res-
onance frequency in dimensional form follows directly fr&g. 5.8 inserted into
EqQ. 5.6. Aroundw ~ 2wy the solution of Eq. 5.7 reads

¢

1
X = N cos(wr+5)+Ccos<§wT+¢> (5.12)

whered is the phase angle of the linear solution which satisfies

tand — 229 (5.12)

2 o2
W”—

The amplitude of the first subharmonic solution either VaessC = 0), or be-
comes

2_ 1.y 2 282 _ 2h2
Co /%% +915g+ i (5.13)
0

where
1 o1— %0)2
2 wp—w?

3,2 3,2 3,2
a|— sz lo1+ 3w 1 o1+ 3w
9020!1( 8~ (-—178 >+ng<—— 178 ) (5.15)

B= (5.14)

w2 2 Wl — w? 4 W w2

and:
B o l_al—ng 3 @ 1
PTRE P\ G oF ) A 2P o

- 9 - (5.16)
+ aﬁ-ng al—i—zw _1_ }_al—zw
4 W-w? 2)\2 wp-w?)’
Note that neatw = 2ax all three quantities3, go andg; are positive.
Theoretically the solution of Eq. 5.13 can only exist if tieent 3282 — w?b?

is positive. This corresponds to the well-known theoréticeeshold for the exis-
tence of subharmonics

éin(w) = %b (5.17)

The threshold determines the regime where the subharmohition is stable.
However, as discussed by Prosperetti and others [78, 80¢nding on the initial
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5.2 THEORY

conditions the subharmonic solution may still not exist.ofkrer threshold is pro-
vided by the regime where the linear solution of Eq. 5.11 be®unstable. In
this regime the only stable solution is the subharmonict&wsiu The instability
threshold &, is given by [78, 80]

En(@) = \/B2 201 (wf — 302)

2g1

J \/134 40; [ (wf — F0?) B2+ g1 w?b?]
2g1

(5.18)

which for w = 2wy reduces tdin, = &p.

From Eqg. 5.17 it is clear that the threshold for subharmoimcseases with
increased damping. However from Eq. 5.10 and Eqg. 5.14 ibvidl thatf and
consequentlyy, vary with et — 8Xert. {eff — 8Xetf IS determined by the initial
condition of the phospholipid shell. In Fig. 5.1 we have @dt¢y, at w = 2wy
as a function of{est — 8xet¢ for the linearized uncoated gas bubble model from
Prosperetti [42] and for the coated bubble model witliR) described by Eg. 5.2
for Ry = 3.8 um. The damping for the coated bubble is determined by Eq. 5.9
where we assume the shell viscosity is equatdo= 3-10 8 kg/s as determined
by Van der Meeret al. for the same type of bubbles [41]. This brings the total
damping for the coated bubble bgyaeg= 0.5. For the uncoated bubble the damp-
ing is determined by the bubble size ananly, bringing the total damping of the
uncoated bubble tbyncoateg= 0.1. We observe that depending on the initial con-
dition of the shelllet; — 8Xet 1, the threshold for a coated bubble can vary. In the
caseleit — 8Xetrf is sufficiently large the threshold for the coated bubble lzan
lower than the threshold for an uncoated bubble. This pesvia possible expla-
nation that even for a fivefold increase of the damping asatrethe shell, the
threshold for the existence of subharmonics for coated leslatan be lower than
for uncoated bubbles depending on the initial conditionthefoubble shell.

The ultrasound contrast agent models with a purely elalsétt eegime [33, 36,
63] cannot predict a decrease in the threshold pressurewastoin of the initial
conditions since in these modd]s; is either zero or of the same order @as,
hence et 1 —8Xett| remains about 1 N/m, which is too low to explain subharmonic
enhancement for contrast agents. In the model shell buckfiodel proposed by
Marmottantet al. [12] we can identify that close to the transition point fronet
elastic to the buckled regimg,(R) changes rapidly fromxmax~ 2.5 N/m to x =
0 N/m, corresponding to a larggR). In fact, in the current model of Marmottant
{(R) is undefined at the transition points. At the transition pf(Ry) ~ {eft
can be much higher than(Ry) ~ Xeff, hence|lett — 8Xetf| Can be large enough
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Figure 5.1: The mathematical threshofg, at w/wy = 2 given by Eq. (5.17) plotted as a
function of the terne ¢ — 8Xeff for Ry = 3.8 um with fixed xer = 0.55 N/m. We ob-
serve that if (et — 8Xets| is large enough, the threshold for a coated bubble can dexrea
below the threshold of an uncoated gas bubble despite it§i@uhl shell damping. The
damping for the uncoated gas bubble is determined by theéiegi@n damping and the
liquid viscosity, for this bubbld = 0.1. For the coated bubble model the shell damping
introduces and extra damping described by the shell vigcosiich is taken 3108 kg/s
resulting in a total damping ddcoateq= 0.5.

to enable subharmonic enhancement for contrast agentsy.|6.2 we have fixed
Xetf = 0.55 N/m (corresponding to the average shell elastigity; found by
Van der Meeret al. [41] for the same type of bubbles) aggis = 5022 N/m.
In Fig. 5.2 we have plotted bothy, and &, as a function ofw/wy for both the
uncoated gas bubble and the coated bubble modelayi) described by Eq. 5.2.
As aresult of the initial conditions we observe that botlesmolds £, andé&;y,) for
a coated microbubble are as low as 6 kPa, much lower than tbhoae uncoated
gas bubble where the threshold is near 90 kPa.

5.2.2 Full numerical solution

The analytical solutions presented in the previous segtimvide a fundamen-
tal understanding of the source of subharmonic behaviopafet! microbubbles.
However, for these calculations we have assumed an infiditeg driving pres-
sure pulse and a sufficiently small amplitude of oscillati@glecting higher order
terms in Eqg. 5.7. In practice, the driving pressure pulseahfasite length and the
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Figure 5.2: The mathematical threshodg, (blue) and the instability threshog, (red) as
afunction ofw/wy for Ry = 3.8 um. The damping for the coated and the uncoated bubble
are the same asin Fig. 5.1, i.e. the damping coefficient éocttated bubble is five times as
large as for the uncoated bubble. Even so, the thresholddoatd bubble is only 6 kPa,
much lower than for an uncoated bubble which has a thresH®@ &Pa. This decrease

of the threshold for the coated bubble results from the rap@hge of in the effective
surface tension as a functionRidescribed byeis = 0.55 N/m andless = 5022 N/m
({ett—8Xett = 500 N/m)

amplitudes of oscillation of the microbubbles exceed thalsamplitude limit. In
the following we will therefore solve Eq. 5.1 numericallyol@ng the equation
numerically requires a model for the relation between thebleiradius and the
effective surface tensioa(R).

We will assumeo (R) to be described as proposed in the model of Marmogant
al. [12]. In agreement with what is known for the static behawbphospholipid
monolayers, Marmottant assumes it is the surface condemtraf phospholipids
on the surface of the bubble that determines the surfaceteasperienced by the
bubble. For low surface concentrations of phospholipitks surface tension of the
water-air interface of the bubble is unaltered and thusldqu@yater= 0.072 N/m.
This regime corresponding to an expanded bubble (areajeised to as the rup-
tured regime. If the surface concentration of phosphddid the surface of the
bubble increases for example by compressing the bubblsyitifece tension of the
bubble decreases and the bubble enters the elastic regniee model of Mar-
mottant it is assumed that in the elastic regime the surfaesidn of the bubble
varies linearly with the radius of the bubble accordingt®) = 2xmaxR/Ro—1)
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5. SUBHARMONIC BEHAVIOR

as in the model of De Jongt al. [63]. The shell elasticity in the elastic regime is
referred to as the maximum shell elasticiyax. We know from Chapter 3 that
the maximum shell elasticity in the elastic regime for thgge of microbubbles
iS Xmax = 2.5 N/m. Below a certain radius the surface concentration asph
pholipids can not increase more and at this point the bubhlere the buckled
regime with a corresponding minimum surface tensioo @) = 0. In the model
of Marmottantet al. {(R) is undefined near the two transition points from the
buckled regime to the elastic regime and from the elastioredo the ruptured
regime. In order to havé(R) defined for allR we assum€ (R) in the two tran-
sition regimes to be defined by two quadratic functions. Tiglification to the
original model of Marmottant is described in more detail BtS4.3. The section
starts with a more detailed description of the model of Mdtamt after which
the two quadratic functions and their corresponding borndanditions are in-
troduced. The shell parameters of the model that are umdeted up to now are
the initial surface tensiow (Ry), the shell viscositys and finally the value of

in the two transition regimes of the effective surface tensiFrom the theoretical
threshold for the existence of subharmonics (Eq. 5.17) wee&xthat these three
shell parameters strongly influence the subharmonic behaVihe shell viscos-
ity increases the dampirgof the system and is therefore expected to decrease the
subharmonic response. On the other hand, the initial ®itéatsiono (Ry) and the
quadratic transition determined lystrongly affect{cts and thus3 in Eq. 5.17.

The effect ofog(Rp) on the subharmonic behavior of phospholipid-coated mi-
crobubbles is shown in Fig. 5.3. In Fig. 5.3C and D two différeesponses of a
3.8 um radius bubble driven at an acoustic pressure of 40 kPa witbgaiency
of 2.4 MHz are shown. We observe that the bubble with a sméiairsurface
tension,o(Rp) close to the buckled regime shows a large subharmonic respon
In contrast, for a bubble with an initial surface tensionha elastic regime where
no subharmonic response is observed. Note also that tharfugrttal response for
both bubbles is similar and is almost unaffectedofyry).

To investigate the effect of the shell parameters on theauhdnic behavior, a
parameter study was conducted. The results are shown iB.Bign the parameter
study the driving pulse pressure amplitude and frequenag \ept constant at
40 kPa and 2.4 MHz, respectively. The driving frequency egponds to two
times the resonance frequency of the bubble. The corresppmpdise shape of
the driving pressure pulse is shown in Fig. 5.3A and is theesasnwas used in the
experiments which will be discussed in the next section. ilhial bubble radius
was 3.8um and it was found that the results presented in Fig. 5.4 ariéesifor all
bubbles with an initial bubble radius betweeprh and 5um. Finally, while one of
the shell parameters was varied the other four parameteesfixed as in Fig. 5.3,
i.e. 0(Rp) = 0.001 N/m,{ =2000 N/m ks = 3-1078 kg/s andmax= 2.5 N/m.
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Figure 5.3: Top figures: An example of the driving pressure waveform @)d (B)
its corresponding power spectrum. Bottom figures: The mtme curve (C) and the
corresponding Fourier transform (sampling rate 1 GHz, 12fiapoints, multiplied with

a factor 50 MHz/1 GHz to enable comparison with Fourier tfams of experimental
data) (D) for two bubbles with a different initial surfac@stoono(Rp) driven with the top
driving pressure of 40 kPa with a frequency of 2.4 MHz. Theelbblack line represents
the numerical simulation for a bubble with(Ry) = 0.001 N/m and the solid red line
corresponds to a bubble with(Ry) = 0.01 N/m. The initial bubble radius and the other
shell parameters are the same for both bubldles; 2000 N/m,ks = 3-10 8 kg/s and
Xmax = 2.5 N/m.
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Figure 5.4: The absolute value of the Fourier transforms of a parametdy £n the sim-
ulated radius-time curve presented in Fig. 5.3. The funddaheesponse to the driving
pressure of 2.4 MHz is clearly visible in all three figures letihe subharmonic response
is observed to strongly vary for each shell parameter vanéependently. A) Foo(Rp)
varied between 0 andyater the subharmonic response is only visible for the initialadion
tion of the bubble satisfying(Rp) ~ 0 or 0(Ry) ~ Owater B) As expected the subharmonic
response is observed to decreasatancreasing from 0 to 10’ kg/s. C) ForZ increasing
from 342 to 10000 N/m the subharmonic is observed to incrbaséor { > 5000 N/m
the amplitude of the subharmonic response saturates.
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The fundamental response in all three cases in Fig. 5.4 sroéd to vary little
as compared to the subharmonic response which strongiyndspa shell param-
eters. The subharmonic threshold is observed to strongigraeon the damping
Ks. In Fig. 5.4B we observe that fa; = 6- 108 kg/s the threshold for the initi-
ation of subharmonics is 40 kPa corresponding to the dripiegsure amplitude.
For smallerks the subharmonic response is observed to increase. In agnéem
with what was found in the weakly nonlinear analysis we fingt tthe subhar-
monic response depends strongly on the change of the igit&l elasticity. In-
deed, the subharmonic behavior is only observed for midibles that have an
initial surface tension close ta(Ry) ~ 0 or 0(Ry) ~ Owater, ClOSe to the transi-
tions from the elastic regime to the two other regimes cpoeding to a large
second derivative of the effective surface tension. Thallatinima observed in
the subharmonic response in Fig. 5.4A are a result of trahsifects resulting
from the finite length of the driving pressure pulse. Thesallominima disappear
for an increased length of the driving pressure pulse. AR thi¢ linearized model
we can conclude that the change in the effective surfacéoteins of fundamen-
tal importance to be able to predict subharmonic behaviopfiospholipid-coated
microbubbles at low driving pressure amplitudes. Furtloeena difference in the
initial surface tension of bubbles caused by the initial ggtmlipid surface con-
centration explains why in some experiments subharmome®laserved at low
driving pressures while in other experiments no subharosoare observed for
microbubbles similar to the ones used in this study [7, 4384782].

Finally, the subharmonic response is also observed toaserwith increasing
{, see Fig. 5.4C. For an increasédlso et = 2Rp(d(X(Ro))/IR) increases.
The transition from the elastic regime to the other two regirhecomes sharper.
Following Fig. 5.1 such an increase would result in a deer@she threshold for
the generation of subharmonics. The maximum subharmosporee is observed
to saturate for a value @ > 5000 N/m.

5.3 Experimental

The previous sections have shown that the subharmonic toeltdyphospholipid-
coated bubbles is predominantly determined by the driviigepfrequency, pres-
sure amplitude, and the initial phospholipid surface caotre¢ion of the micro-
bubble. Experimentally, the initial phospholipid surfacacentration of the phos-
pholipid shell of the microbubble is difficult to control agosed to the frequency
and the amplitude of the driving pulse. We therefore haverdsd the radial dy-
namics of 39 different isolated microbubbles with the Bl ultrahigh-speed
camera [39] as a function of both the driving pressure pulsguiency and ampli-
tude.
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5. SUBHARMONIC BEHAVIOR

5.3.1 Setup

The experimental setup is schematically shown in Fig. 5.5e $etup consists
of a cylindrical Plexiglass container that was mounted uradeupright micro-
scope (BXFM, Olympus Optical, Japan). Within the contaiter microbubbles
were confined inside an OptiCell cell culture chamber (TheRisher Scientific,
Waltham, MA, USA). The acoustic transmit circuit consistsadocused 3-MHz
center frequency transducer (PA168, Precision Acoustids Dorset, UK) that
was mounted under an angle of°4dnder the OptiCell. A 0.2 mm needle hy-
drophone (Precision Acoustic Ltd., Dorset, UK) that moveand out of the com-
bined optical and acoustical focus was used to calibrateafigd the transducer.
The transmit transducer was excited with a sequence of pgiseerated by an
arbitrary waveform generator (Tabor Electronics Ltd, Mdgleé26, Haifa, Israel)
and amplified by a power amplifier (ENI, Model 350L with &input impedance,
Rochester, NY). To calibrate and align the transmit tranedwa broadband chirp
function was used to excite the transducer. The output rsspof the transducer
was measured with the calibrated needle hydrophone in thes fof the transducer.
From the response the transmit transfer function of thesttacer was determined
as is described in [83]

The optical focus of a 139 microscope objective was positioned in the acous-
tical focus of the transducer. It was illuminated from belath a highintensity
xenon flashlight (MVS 7010 XE, Perkin Elmer, Waltham, MA). Antinuous-
wave light source (ACE I, Schott, NY) in combination with a B€amera (LCL-
902K, Qwonn) was used to monitor the bubble in between exygsris. The im-
age plane of the microscope objective was coupled into thadgris 128 ultrahigh
speed imaging facility. The high-speed camera consist2®&&parate highly sen-
sitive CCD (Charge Coupled Device) sensors that are illateith consecutively by
a rotating mirror. The mirror turbine is driven by a mass-floantrolled flow of
Helium, at a revolving rate of up to 20,000 revolutions perosel, corresponding
to a frame rate of 25 million frames per second. Six conseeutiovies of 128
frames each can be stored in a memory buffer with a time iatef/80 ms. We
employed the microbubble spectroscopy method detailedlihtp characterize
the bubbles. The microbubbles were excited with a smootlihgdewed driving
pressure waveform with a frequency ranging from 1 to 4 MHizwéh peak rar-
efactional amplitudes ranging from 5 to 150 kPa and a fixegdtleof 8.9uus. An
example of a driving pressure waveform is shown in Fig. 5.I8/reparation of
the experiment 12 driving pressure pulses were uploadebet@rbitrary wave-
form generator. The frequencies of each of the waveforms wemied and equally
spaced near two times the resonance frequency of the miotghun this way the
radial subharmonic resonance behavior of the bubble wattifjgd. The optical
recordings consisted of two times six movies at a frame rate h3 Mfps.
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5.3 EXPERIMENTAL

The movies were stored on a PC, and all data were post-peztesing Matlab
(The Mathworks, Natick, MA). The image sequence of the &ailg bubble was
analyzed with Matlab through a semi-automatic minimum edgbrithm [41] to
give the radius of the bubble as a function of tiR@).

All the results discussed in this paper were conducted wittrabubbles lo-
cated against the top wall of the OptiCell. The experimeséalip is compatible
with an optical tweezers setup that was coupled through tlbeostope into the
microscope objective. With this combined setup we could aissition the mi-
crobubbles 10um away from the top wall. The details of this setup are desdrib
in full detail in previous work [84, 85]. To investigate thieet of the wall on the
subharmonic behavior of coated microbubbles we have coedwseveral scans
around the subharmonic resonance of different microbshbibt¢h when the bub-
ble was located against the top wall of the OptiCell and wherught 100um
away from the wall. Based on these experiments we concluatdha presence of

Mirror

— To Brandaris Camera

100X Objective Hydrophone

AWG | NIRRT e SLTCLL OptiCell

[
Amplifier

\\

o

transducer . [llumination

Figure 5.5: A schematic overview of the experimental setup that was trsexptically
record the radial dynamics of coated microbubbles locatsidé an optically and acousti-
cally transparent OptiCell chamber. The driving pressuaeeform produced by an arbi-
trary waveform generator (AWG) was amplified and transmlitig a focused transducer.
The radial dynamics were recorded through ax1@bjective coupled through an inverted
microscope into the Brandaris ultrahigh-speed camera.

87



5. SUBHARMONIC BEHAVIOR

a wall does not alter the subharmonic behavior of ultrasaamdrast agents to be
experimentally observable in the current setup. In thevalhg we therefore only
consider the results based on the setup without the optieszers.

5.4 Results

In total 39 individual microbubbles were included in thisdyf. Subharmonic re-
sponses were observed for approximately 50% of the mictdbabThe other 50%
of the microbubbles could not be forced into subharmonidlasons for the driv-
ing pressure amplitudes and/or pulse lengths employedsrsthidy which were
always smaller than 150 kPa. This finding confirms previossilte by Bhaga-
vatheeshwaraat al. [81] and by Kimmelet al. [82]. In those cases where subhar-
monic oscillations were observed these were initiatedadiyeat driving pressure
amplitudes smaller than 40 kPa confirming the results foyndrnother set of au-
thors [7, 43-4T7].

Fig. 5.6 shows a typical example of an ultrahigh speed réoegrdf a micro-
bubble with an initial bubble radius of 3t8n. The bubble was excited with 12 dif-
ferent frequencies near two times its resonance frequemnaigh was 1.3 MHz
following Van der Meetret al. [41]. The subharmonic response is clearly visible
both in the time and frequency domain. We observe a maximunthé&oampli-
tude of the subharmonic response around a driving pressqaency of 2.4 MHz
corresponding to a 1.2 MHz subharmonic oscillation. At fresjuency the ampli-
tude of the (radial) subharmonic response is even higherttimamplitude of the
fundamental response. Both above and below the resonateeficy the subhar-
monic response decreases and a subharmonic resonancedateveiot shown)
can be obtained similar to the resonance curve producedmidtobubble spec-
troscopy by Van der Meegt al. [41]. Furthermore, as expected, the fundamental
response of the microbubble does not show a resonance belsawe it is ex-
cited far above its resonance frequency, which also explairy the fundamental
response is observed to decrease for increasing drivirgg gréquency. Finally,
note that most of the responses presented in Fig. 5.6 shovo awker frequency
component even though the initial bubble radius was suigtlaitom the radius-
time curve before the Fourier transform was performed. Ene arder component
results from the compression-only behavior of the bubbée,the bubble appears
to compress more than it expands [10].

The experimental data is compared to the theoretical gied& Fig. 5.7 shows
a best fit of the model of Marmottaat al. [12] for the radius-time curve that shows
the maximum subharmonic response in Fig. 5.6 (e). The unkrpavameters of
the model,{, the shell viscosityks and the initial surface tensiooi(Ry) of the
bubble are varied using the iterative fit functiiitrin Matlab. The driving pressures
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Figure 5.6: The radius-time curves (left column) of a 3un microbubble excited with
twelve different driving pulses all with an amplitude of 4B&kand different frequencies. In
the corresponding absolute value of the Fourier transfeampling rate 50 MHz, length
pulse 501 points) of the radius-time curves (right colume)alserve clear subharmonic
behavior. We can identify a subharmonic resonance cur¢@#aks at a driving frequency
of 2.4 MHz, about twice the resonance frequency of the bubble
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Figure 5.7: The best fit of the fifth radius-time curve from Fig. 5.6E witietmodel
proposed by Marmottaret al. with the shell parametepgnax = 2.5 N/m,{ = 2000 N/m
Ks = 3-108kg/s ando(Ry) = 0.001 N/m both in A) the time domain and B) in the
frequency domain (sampling rate both curves 50 MHz, 501tppin

for the simulated and measured radius-time curve are wniThe goal of the fit
was not to determine the definitive values for the three glaedmeters but to see if
the model proposed by Marmottagital. is able to predict subharmonic behavior
of coated microbubbles at these low driving pressure aogai as observed in the
experiments.

The agreement between the two radius-time curves is goo@. b€kt fit pa-
rameters found are in good agreement with the parametey ptedented in Sec.
5.2.2 and the values found elsewhere in the literature. Hse fit value for the
shell viscosityks = 3-1078 kg/s is in agreement with Van der Meer et al.[41].
To explain the amplitude of the subharmonic oscillationseseed in Fig. 5.7 we
observe in Fig. 5.4 that the amount of damping depictedkpy= 3- 1078 kg/s
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requires a large value fd@. This is in agreement with the value fgrfound in the
best fit, namel\{ = 2000 N/m. Furthermore, in Sec. 5.2.2 and from the analytical
solutions in Sec. 5.2.1, we foura Ry) should be close to zero which agrees well
with the best fit value found in Fig. 5.¢,(Ry) = 0.001 N/m.

To investigate the frequency dependence of the subharnhbehiavior of phos-
pholipid-coated microbubbles we varied the driving fragmeas shown in Fig. 5.6.
An overview of the frequency behavior presented in Fig. 5.6hiown as a single
plot in the spectrogram in Fig. 5.8B. The horizontal axishe figure is divided
into twelve columns representing the twelve driving frengies. The vertical axis
represents the response frequencies corresponding torilzerfital axis of the fig-
ures in the right column of Fig. 5.6. A frequency of 50 MHz waed to interpolate
the radius-time curves. The color coding in Fig. 5.8 represéhe absolute value
of the Fourier transform of the radius-time curves. The zeder frequency com-
ponent was filtered out completely. Two other spectrogramngifferent bubble
radii are presented in Fig. 5.8A and Fig. 5.8C.

Figure 5.9 shows the full (sub)harmonic resonance behafitine very same
bubbles presented in Fig. 5.8. The initial surface tensimh{awere assumed to
be equal to the values found in the previous fit (see Fig. Hidtlae shell viscosity
was assumed to vary with initial bubble radius as shown by d@&nMeeret al.
[41]. The color coding for the simulated spectra is identioathose in Fig. 5.8
allowing for a quantitative comparison between the expental an theoretical
subharmonic behavior. Both the simulated spectra and tlasuned spectra show
subharmonic resonance behavior at the same frequencigbefmore, we iden-
tify a good agreement between the absolute amplitude ofithiegesmonic response
between the simulated and the measured spectra.

To determine the threshold pressure for the initiation bfsumonic oscillations
for coated bubbles the experiment as presented in Fig. SsGepeated for differ-
ent driving pressure amplitudes. The maximum responseudrsxry for the ex-
perimentally determined subharmonic oscillations waenlel to decrease from
1.4 MHz (<5 kPa) to 1 MHz 80 kPa) for increased driving pressures. This can
be attributed to a nonlinear phenomenon, where the freguehmaximum re-
sponse of the bubble decreases for increased driving peessee chapter 3. In
Fig. 5.10A the subharmonic oscillation amplitude at the mmaxn subharmonic
response frequency is plotted as a function of the drivimggure amplitude. We
observe that the threshold pressure for the initiation dhawmonic oscillations
is smaller than 5 kPa, much lower than that of an uncoated @alslé without a
shell and much lower than is expected based on the additifamaping introduced
by the phospholipid shell of the bubble [7, 43—-47]. For thePaldriving pres-
sure the only driving frequency showing a subharmonic nespavas 2.8 MHz
corresponding to a resonance frequency of 1.4 MHz.
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Figure 5.8: The amplitude of the Fourier transform of the radial resparfshree differ-
ently sized bubbles as measured with the Brandaris ultnasiiged camera represented by
a color. The horizontal axis represents twelve differeivilg pressure frequencies with a
fixed driving pressure amplitude of 40 kPa. The responseiéegy is represented by the

vertical axis.
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Figure 5.9: Simulated subharmonic resonance behavior of coated mibtaés with the
same initial bubble radii as in Fig. 5.8 using the best fitlgh@lameters found in Fig. 5.7.
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Interestingly, we observe that the subharmonic amplitietzehses for increas-
ing driving pressure amplitudes above a pressure of 80 kBanvEstigate these
results in more detail we conducted numerical simulatiosiagithree different
models, an uncoated gas bubble model as described by Lgtsbai. [43], a
purely linear viscoelastic shell model [63] and the model proposed by Mégrm
tantet al. [12]. The shell parameters for the model of Marmottant wefem
from the best fit from Fig. 5.7. For th@ear viscoelastic shell model we used
the very same shell viscosity. The shell elasticity wasnalkem Van der Meer
et al.[41], xefrt = 0.55 N/m, who determined the shell elasticity folirmear vis-
coelastic shell model. The initial surface tension in linear viscoelastic shell
model is assumed to be the same as found in the best fit frond Figln the nu-
merical simulations, the initial bubble radius and drivimgssures were those of
the experiments. As discussed before, the maximum sublmicfilear response
frequency varies slightly for increased driving amplitadé herefore, similar to
the experiments, we varied the driving frequency aroundetiie resonance fre-
quency of the bubble to find the maximum subharmonic respfsageency. The
maximum subharmonic oscillation amplitude for the threedint models at the
maximum subharmonic response frequency was plotted dghmslriving pres-
sure amplitude together with the experimental data in FI0A. From this figure
it is clear that the uncoated gas bubble model starts to shbiesmonic behavior
for driving pressure amplitudes between 50 kPa and 80 kPaeake¢he experi-
mental data shows subharmonic behavior already at a dqpregsure amplitudes
of 5 kPa. As a result of the increased damping introduced &¥yttbble shell, the
linear viscoelastic shell model shows no subharmonics up to andyipressure
amplitude of 240 kPa. The model by Marmottant on the othedmardicts that
the threshold pressure for the initiation of subharmonio®at vanishes, which is
in agreement with what is found experimentally. Overall #zgeement between
the theoretical predictions of the model proposed by Matambet al. [12] and
the experimental data is very good. In both theory and ewpaati we observe that
the oscillation amplitude at the subharmonic frequencylzaas high as 4 % of
the initial bubble radius already at a driving pressure @ of 40 kPa. Also
the decrease of the subharmonic oscillation amplitude ifgivdr pressures seems
to be correctly predicted by the model. The very same exmarisnand numerical
simulations were conducted for two other microbubbles: fon@ bubble with an
initial bubble radius of 8 um and one for a 2 um radius bubble; these are pre-
sented in Fig. 5.10B and Fig. 5.10C, respectively. The sh&tosity was adapted
to the initial bubble radius of the bubble in accordance wh#hresults of Van der
Meeret al. [41], who found a shell viscosity depending on bubble sizenore
precisely on dilatation rate. The shell viscosity was dlyetaken fromFig.8 (b)
from Van der Meetret al. [41]. For the 4.8um radius bubble the shell viscosity
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Figure 5.10: The maximum amplitude of the subharmonic oscillations of)a888 um
bubble, B) 4.8um and C) 2.4um bubble as a response to different driving pressure am-
plitudes. The measured responses are compared with tharsuthic responses for the
same initial bubble radii predicted by three different mMed&he model proposed by Mar-
mottantet al[12] (solid red line), and a purelinear viscoelastic shell model (dashed blue
line) and a free gas bubble model (dotted black line).
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was therefore taken to be equal t8 4108 kg/s and for the 2.4tm radius bubble
it was taken to be equal to2: 108 kg/s.

In Fig. 5.10C and Fig. 5.10B we again observe that the subtr@mthreshold
pressure has decreased considerably compared to thedloresbssure predicted
for an uncoated gas bubble of the same size.liflear viscoelastic shell model is
unable to predict subharmonics at such low driving presaomglitudes.

Comparing Fig. 5.10A, Fig. 5.10B and Fig. 5.10C we obsena the max-
imum subharmonic oscillation amplitude of the largest amdltest bubble are
comparable. Furthermore it is found that the thresholdsuresfor the initiation
of subharmonic oscillations does not vary strongly withlidelvadius. We also ob-
serve that for all three bubble sizes the model of Marmopaadicts a maximum
for the subharmonic oscillation amplitude between a dgvimessure of 50 kPa
and 100 kPa.

5.5 Discussion

From the comparison between the analytical, numerical apdramental results
we conclude that the subharmonic behavior of phosphotipated microbubbles
at low acoustic driving pressure amplitudes can be explaiea rapid change
of the effective surface tension of the bubble shell. We &tsb that the subhar-
monic behavior of phospholipid-coated microbubbles isipminantly determined
by the initial phospholipid surface concentration on thblda wall. The descrip-
tion of the effective surface tension of a phospholipidtedamicrobubble as a
function of bubble radius proposed by Marmottahél. [12] is based on the quasi-
static behavior of phospholipid monolayers [64, 65]. Hegesliow that the main
features of the model responsible for the subharmonic behaf phospholipid-
coated microbubbles, such as the large change of the igfi&ll elasticity, also
provide excellent agreement with experimental obsermatiat higher frequen-
cies. The phospholipid molecules covering the surface oflBRnicrobubbles,
are distearoylphosphatidylcholine (DSPC), and dipalylpttosphatidylglycerol
(DPPG). These are well known pulmonary surfactants [86]thadt dynamic be-
havior has been the subject of numerous studies. Hereeandgers make use of
a so-called pulsating bubble surfactometer [87]. In a pimgdubble surfactome-
ter a bubble of around 500m is coated with the surfactant of interest while the
radius of the bubble is varied through an externally apphiesssure. The pressure
in and outside the bubble, which is monitored during the llagicins, provides
direct information on the dynamic surface tension of thelbeib From dynamic
surface tension measurements conducted by &ah [66] and Chenget al. [67]
on DPPC (similar to DPPG and DSPC) we observe that the chantpe chell
elasticity is indeed much larger than the shell elasti¢gglf for an initial surface
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tension close to the phospholipid surface saturation caraston (which can be
appreciated from the sharp peaks for low effective surfansion and round peaks
for large effective surface tension in Fig.2 of [66] and Eigf [67].

The functional form of the effective surface tension figurepmsed by Mar-
mottantet al. [12] is based on a few approximations: a perfectly elastigne
can be defined, the elasticity is zero in the buckled reginteadter rupture of the
shell, buckling and rupture are reversible, the surfacsid@ngoes to zero in the
buckled state. Furthermore, a more realistic descriptmulsl account for several
factors that are known to influence the dynamic behavior ospholipids mono-
layer, such as the ionic strength and pH of the solution, &atpre, impurities
and dissolved surfactants [86].

An explanation why around 50% of the microbubbles studietthis paper and
similar studies by other authors [81, 82] showed no subhaitrizehavior at low
acoustic driving pressures could be that the surface oéthabbles was insuffi-
ciently saturated with phospholipids. This would resulaminsufficiently large
change of the initial shell elasticity to initiate subhammbehavior.

The findings presented in this paper are valuable for thecgtin of phospho-
lipid-coated microbubbles in medical ultrasound imagiBg. controlling the ini-
tial conditions of the microbubbles, their subharmonicadr can be enhanced
leading to an improved contrast to tissue ratio in contestanced ultrasound
imaging. One way of changing and controlling the initial dions of the phos-
pholipid shell is through a change of the ambient pressuigs ilea has very
recently been shown by Frinkireg al.[49] and provides new possibilities for non-
invasivein vivo hydrostatic pressure estimations inside the heart and lagsels.

5.6 Conclusions

Through a weakly nonlinear analysis we provided an expiandbr the decrease
of the threshold amplitude of the driving pressure abovectvithe subharmonic
behavior of phospholipid-coated microbubbles is initiateVe show that a de-
crease of the subharmonic threshold for coated microbslaale only be explained
if the shell elasticity of the bubble shef,(R), varies rapidly with the amplitude
of oscillation. Unlike the pureljinear viscoelastic models [33, 35, 36, 63] the
model of Marmottanet al. [12] assumes that the shell of a phospholipid-coated
microbubble is elastic only in a small radius domain. Owsids domain the shell
elasticity is zero. It is shown that as a result of this ragidrge in the shell elas-
ticity, the subharmonic behavior of coated microbubbldi&ély to occur already
for driving pressure amplitudes as low as 6 kPa.

In a full parameter study of the model we show that the indiafface tension
of the bubble shell, i.e. the initial phospholipid surfacacentration, determines
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whether or not subharmonics occur. If the initial surfagesten of the bubble is
sufficiently close to the buckled regime and the collaps@é®fihospholipid mono-
layer from the elastic regime to the buckled regime deteechioy { is sufficiently
abrupt subharmonic behavior is enhanced. Furthermorecibrifirmed that the
subharmonic behavior is enhanced for a smaller shell vitscos

Experimentally the subharmonic radial dynamics of diffélesized microbub-
bles was studied for different driving pressure frequenaiear two times the res-
onance frequency of the bubble for different driving pressamplitudes. Sub-
harmonic oscillations were observed for bubbles insonifigd driving pressures
with amplitudes as low as 5 kPa. This indicates that the fimldspressure above
which subharmonic oscillations may occur is even smalleplfmspholipid-coated
microbubbles than for uncoated gas bubbles, even thoughemik of the shell
viscosity coated bubbles are more heavily damped.
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Bubble-wall interactions:
Changes in microbubble
dynamics*

The authors report optical observations of the change indyreamics of one and
the same ultrasound contrast agent microbubble due to tigeimce of interfaces
and neighboring bubbles. The bubble is excited by a 2.25 Mtdzsound burst
and its oscillations are recorded with an ultrahigh-speeamera at 15 million
frames per second. The position of an individual bubbletiregeto a rigid wall or
second bubble is precisely controlled using optical tweebased on Laguerre-
Gaussian laser beams [P. Prentice et al., Opt. Express 12(83904); V. Garbin et
al., Jpn. J. Appl. Phys. 44, 5773 (2005)]. This allows foreaied experiments on
the very same bubble and for a quantitative comparison oétfeet of boundaries
on bubble behavior.

1Based on: V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, Mig®velde, S.M. van der Meer, N.
de Jong, D. Lohse, and M. VersluiShanges in microbubble dynamics near a boundary revealed by
combined optical micromanipulation and high-speed imgghpplied Physics Letter80 (2007)
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6.1 Introduction

Micron-sized gas bubbles are effectively used as a conagest in ultrasound
medical imaging. They contain an inert gas and are encapsulty a phospho-
lipid, protein or polymeric shell. In the ultrasound fieldjthvtypical medical
imaging frequencies between 1 and 10 MHz, they undergorliaed nonlinear
oscillations leading to an acoustical response that altbegliscrimination of the
blood pool from the surrounding tissue [88]. The study ofdlheustical response
of ultrasound contrast agent (UCA) microbubbles has d@#dawide interest from
both the medical and acoustical communities, not only fovigling a better under-
standing of their complex dynamics, but also for their ptigtmise for drug deliv-
ery and therapeutic applications [8]. Bubble oscillatiansltrasound frequencies
can be recorded optically [89-91] with the advantage of igiiog direct visual-
ization of nonlinear oscillations [12], bubble rupture J%hd interactions with
vesicles or cells [93, 94]. In our experiments, ultra-higleesd optical imaging is
performed using a digital rotating mirror camera specifjcdéveloped for inves-
tigating microbubble dynamics [39]. The camera system jmbke of recording
128 frames at a frame rate of up to 25 million frames per se¢btigs), thereby
fully resolving the oscillation dynamics at nanosecondsegcale.

For molecular imaging applications in ultrasound, i.e. ioa-invasive detec-
tion of a specific disease at a molecular level, it will be @l develop meth-
ods for selectively detecting adherent UCA microbubbles tave bound to spe-
cific molecular targets from freely flowing ones, primarilgded on a change in
their acoustic response. Considerable differences inrtigitude of oscillations
[95, 96] and in the spectral response [97] were reportediticen general, the
studies on UCA microbubble dynamics suffer from the lack arfitecol on bub-
ble position, however, and they are therefore based on disemeraging and
statistical observations of many different bubbles. Tolihst of our knowledge,
time-resolved dynamics of one and the same UCA microbubtdiemucontrolled
well-defined conditions has not been reported previously.

In this chapter, we report the use of optical tweezers for U@lérobubble ma-
nipulation, enabling the study of bubble dynamics with colléd boundary con-
ditions. A quantification of the acoustical and fluid dynaahiforces for the very
same bubble when it is freely floating and when it is close to@ndary is there-
fore feasible, provided that the initial bubble propertiesiain unchanged in con-
secutive experiments. Three-dimensional optical trappihsingle and multiple
UCA microbubbles has been demonstrated by various groithsy &y focusing
an optical vortex beam, e.g. a Laguerre-Gaussian beam 88r%y rapidly
scanning the beam in a circular trajectory [99]. The abiid@yposition UCA mi-
crobubbles with optical tweezers was also successfullyoérg for studying cell
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sonoporation phenomena induced by violently collapsingrofiubbles [100].

6.2 Setup

The setup for combined optical trapping and ultra-high dpe®ging is based on
an upright microscope (BXFM, Olympus), see Fig. 6.1A. A Gdaus beam from
a 1064 nm continuous wave Yb fiber laser (YLM, IPG Photonissganverted
into a Laguerre-Gaussian (LG) mode (Fig. 6.1B) by a phadeadiive optical el-
ement (DOE) [58] implemented on a spatial light modulatdrNi$ (X8267-11,

SLM Q

ultrasound

transducer
light source

D

Figure 6.1: A) Setup for combined UCA microbubble trapping, acoustai@ling and
ultra-high speed optical recordings. The laser beam isextes by the spatial light mod-
ulator (SLM) into a Laguerre-Gaussian mode; upon refleatio@ dichroic mirror (DM)

it enters the objective (100x) and is focused into the samgileme. The ultrasound beam
overlaps the optical focal volume. BS: beam splitter, eesiblo imaging modes: monitor
mode on a CCD camera (T = 20%) and imaging mode on the ulttadpged camera
Brandaris (R = 80%). L1 and L2: lenses. B) A focused Lagu&aeissian beam; scalebar
5 um. C) Schematic view of microbubble trapping in a Laguergi€§sian beam.D) Image
sequence of a trapped microbubble which is positioned in 3D
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Hamamatsu). Upon reflection on the dichroic mirror, the béafocused by a
100x microscope objective (LUMFPL, Olympus; NA = 1.00, watamersion)
into an OptiCell cell culture chamber (BioCrystal, Inc.)heve bubbles are in-
jected. The beam divergence is adjusted to compensateefonigmatch between
the trapping plane and the image plane. The chamber is @usition top of a
water-filled container with an unfocused 2.25 MHz transd#306, Panamet-
rics Inc.) mounted at #3ncidence angle with the optical axis. The acoustical
beam (5 mm diameter) fully overlaps the optical field of vieb@@x 100 um?).
Bright-field transmission imaging is performed through #aene objective. The
ultra-high speed camera is directly connected to the ingagort of the micro-
scope and records the bubble oscillations during ultra@sonation at 15 Mfps.
A charge-coupled device (CCD) camera (LCL-902HS, Watec, édfisiency at
1000 nm) monitors the trapping beam shape and position,henbiubble selected
to be trapped. The trapped bubble (Fig. 6.1C) can be posii@t a prescribed
distance from the wall by positioning the chamber upwardk @i5um accuracy,
using a micropositioning stage. An image sequence of the 8bipulation of the
bubble is shown in Fig. 6.1D. In the first image the bubbleapped at the wall.
The following two images the chamber is moved in XY-diregtto reposition the
trapped bubble. In the last two images the sample is movedugsras seen from
the free bubbles which are floating at the upper sample wadililevihe trapped

A B C
"""""""""""""""""" IS
-t - -G - - -L_. Trapping/imaging plane

% |
1 1
D E F

1o ® T """ [ !L[d o
== -d//————-—- ------ .____-_“_J_ -3 ‘—-—J—— - - Trapping/ imaging plane

Figure 6.2: Schematic of an experiment. A) The dynamics of a bubble aitleare
recorded. B) The laser trap is turned on which allows maaijr of the bubble position,
C) the bubble is positioned in free space by moving the chamvbé up, and D) the trap
is turned of and the dynamics of the bubble at a distaljgg are recorded. E) After
the recordings the bubble is immediately trapped at the gasition, F) the chamber is
moved to change the distance from the wall and the experioznibe repeated.
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bubble remains in focus at a controlled distance from thé wal

The dynamic implementation of DOEs on a programmable dpajla mod-
ulator enables fully flexible trap configurations. The siZeadrap can be con-
trolled by changing the Laguerre-Gaussian mode [101] arsgbtad to the full
range of UCA microbubble size. All studies were performethviiie experimen-
tal contrast agent BR-14 (Bracco S.A., Geneva, Switzejlaarmdagent containing
phospholipid-stabilized microbubbles with a perfluoreim& gas core. The bub-
bles have a mean radius of Jun and 95% of the bubbles are smaller tharnuig.

The schematic of a typical experiment is shown in Fig. 6.2.uBbje is insoni-
fied at the wall (Fig. 6.2A) with an ultrasound wave which detssof an eight
cycle burst at a frequency of 2.25 MHz, with a peak negatiwesgure of 150 to
200 kPa (M.l.= 0.12). After the experiment the laser trapurséd on to trap the
bubble (Fig. 6.2B). The sample is moved upwards and the échppbble remains
in the optical focus at a distancky from the wall, while the other bubbles float
up against the upper wall (Fig. 6.2C). The laser is blockathduthe recording to
avoid interfering optical forces (Fig. 6.2D). Directly aftthe experiment the bub-
ble was trapped again at the same position (Fig. 6.2E). Vitnddoubble is in the
trap the distance between the bubble and the wall is charlgigdq.2F) and the
experiment is repeated. For analysis and comparison wetbréical models, the
2D bubble contours (which are always observed to be symeagitri our experi-
ments) were processed to track the bubble radius as a foradtiome, resulting in
a so-called radius-timeR(t))-curve of the bubble.

6.3 Results and Discussion

We investigated the influence of the chamber wall on the dyegaf an individual
bubble. The radius-time curves of a bubble with a restingusadf Ry = 2.45 um
are shown in Fig. 6.3. First a movie was recorded when thelbwhbas insonified
and positioned at the wall, while a second movie was recovdeeh the bubble
was positioned 5um away from the wall. One last movie was recorded after
positioning the bubble back at the wall, to double-checkd bubble properties
were not changed during the previous insonations. Thesédne curves indicate
that the vicinity of the wall suppresses the amplitude oflladions for one and the
same microbubble by more than 50%. This finding can be atéibto three dis-
tinct effects. First, the vicinity of a rigid wall is expectdo cause a shift in the
resonance frequency of the bubble [102]. The effect of a ngall is commonly
described by the so-called 'method of images’ (see, e.gs.R&2] and [103]),
where an acoustic image bubble is located in the mirroredtiposa system of
two bubbles having the same size and oscillating in phaseethdienerates the
same potential flow at the wall position. As our experimengsaeicarried out at a
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t (us)

Figure 6.3: ThreeR-t curves of a single bubble with an initial radié® = 2.45 um,
insonified with a 8-cycle ultrasound burst at 2.25 MHz withepplied pressure of 200 kPa.
The frame rate is 15 Mfps. The solid line represents the aogdiof oscillations at the
wall; the dash-dotted line is recorded with the bubble atstadice of 5Qum from the
wall. The dashed line is the radius-time curve of the saméleutepeated at the wall
is identical to the first one showing that repeated insonatlave not altered the initial
bubble properties.

fixed insonation frequency of 2.25 MHz, a shift in the resasafmequency results
in different amplitudes of oscillations being observedha wall and away from
the wall. Second, a full description of the bubble-wall systhas to account also
for a dissipation introduced by the viscous boundary layénewall, which is not
taken into account when applying the image bubble methods pgirenomenon
contributes to the damping of the oscillations, in additiorthe other damping
mechanisms for coated bubbles (bulk and shell viscosiggntl diffusion, re-
radiation of sound). Finally, asymmetric oscillations naaise in the vicinity of
the wall. The eccentricity of bubbles in the vicinity of a dkgpy wall and driven
at comparable pressures has been indeed reported to beach3g95], although
these observations were made on adherent bubbles. In ocerients, the pos-
sible adhesion to the wall was excluded by verifying with tpical tweezers
whether bubbles were indeed non-adherent, yet in contaisttiaé wall. In order
to visualize asymmetric oscillations the behavior in a plarthogonal to the wall
should be observed, however this was not possible in oueptestup without
major modifications.

The optical tweezers setup presented here, nonethelésss alecoupling of
the mechanisms listed above. The resonance frequencyrghifted by the image
bubble can be observed by studying a real two-bubbles systéen the viscous
boundary layer induced by the wall is not present. Furtheenio this case the
system is imaged in the plane containing both the bubblesul8rasymmetric
oscillations arise, they would then be detected from thistpad observation. Two-
trap DOEs are produced by dividing the full SLM active aret® itwo sections,
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6.3 RESULTS AND DISCUSSION

Figure 6.4: Radius-time curves taken at 15 Mfps for two interacting Bebb
A) R-tcurves of the two bubbles trapped gt distance from each other and positioned
50 um away from the wall. The dashed curve 1 corresponds to bublles solid line 2a
corresponds to bubble 2. B) The dashed line 2B represen®-tlwairve of bubble 2 os-
cillating after bubble 1 has been released. RAecurve 2a is also plotted for comparison.

White scalebar in pictures: m.
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each containing a DOE for a single-trap. The distance betle®two traps can
be controlled in real-time with suyfam precision by changing the distance between
the two DOEs, with a minimum distance corresponding to the wbbles being

in contact, and a maximum distance corresponding to sebelable diameters
separation between the bubbles. The same approach can dé¢ousticiently
generate larger arrays of traps (up to 10-20 in our setud) eae individually
tuned for a prescribed bubble size.

Two bubbles having similar size were trapped with a sepavatistance in the
same order as their diameter. The bubble pair was then @usiti50um away
from the wall to reduce wall effects as previously discussed to extract informa-
tion purely on the bubble-bubble interaction. We invesgdahe radial dynamics
of the bubble pair, then released one bubble by switchingheffcorresponding
trap, and studied the behavior of the remaining bubble.

Fig. 6.4 shows the result of this experiment: the initialiwadf the bubbles is
2.25 um and 2.40um, respectively, the bubble centers beingu® apart. The
dynamics of the bubble pair in ultrasoundl £ 2.25 MHz, P, = 150 kPa) was
first recorded at 15 Mfps, see the radius-time curves of FA 6N Fig. 6.4B the
radius-time curve for the residual bubble is shown, togetVith the radius-time
curve previously recorded for the very same bubble in thegmee of the second
one. When comparing the two curves it is apparent that bubdxddlations are
highly suppressed by the presence of the neighboring bubblepeated experi-
ments the two bubbles always retained their spherical syiigmia this case we
can thus ascribe the change in the bubble response to thénshésonance fre-
quency. A change in the distance between the bubbles wasbésrved (data
not presented here), due to an attractive secondary Bjeffkmee (see e.g. [32]
for an overview of the topic). A detailed study and quanttfma is presented in
chapter 8.

6.4 Conclusion

In this chapter we presented a setup that enables for a tateveticharacteriza-
tion of the boundary-dependent UCA microbubble dynamidbesingle-bubble
level. We compared the behavior of the very same UCA micrbleubnder dif-

ferent boundary conditions, by a well-controlled positi@nof individual bubbles
using Laguerre-Gaussian optical tweezers and by recotid@igultrasound-driven
oscillations with an ultra-high speed camera. We therefareduced a powerful
tool for investigating how the bubble dynamics changes wattying distance to
neighboring objects. A deeper understanding of these phena may lead to
novel imaging modalities together with the use of functi@eal microbubbles
specifically designed for targeted diagnostic ultrasounmaging.
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Bubble-wall interactions near
a thin compliant wall'

The influence of a thin boundary on the dynamics of singleasduind contrast
agent microbubbles is investigated. Experiments wereopadd with the ultra-
high speed camera Brandaris 128 coupled to an optical tweesstup allowing
for micromanipulation of the microbubbles in 3D space anchggerally resolv-
ing their dynamics. The proximity of the boundary is ingegtd by recording
the radial dynamics of one and the very same bubble at céediralistances from
the wall. Influences of the coating on the bubble dynamicsvaremized by in-
sonifying the bubbles above their frequency of maximunoresp The observed
radial response of the bubbles decreases with decreassigriie from the wall.
Resonance curves of the microbubbles were obtained by iscatite insonation
frequency at various distances from the wall. The frequafcgaximum response
is found to decrease in the vicinity of the wall with respedtie bubble oscillating
far from the wall in case shell effects are minimized. Thesgrgental results are
compared to simulations performed with a numerical modéickvaccounts for
the interaction of a coated bubble with a compliant boundafe experiments
and simulations are in good agreement when the bubble igd@@bove resonance
where the shell contributions are small. Below resonandeeres the bubble re-
sponse is dominated by the nonlinear shell behavior, theledusystem allows for
an extremely sensitive assessment of the boundary camliviothe bubble-wall
interaction.

IM. Overvelde, T. Hay, B. Dollet, V. Garbin, Y. llinkskii, N.edJong, D. Lohse, and M. Versluis
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7. COMPLIANT WALL INTERACTIONS

7.1 Introduction

Ultrasound contrast agents [104] (UCA) are widely used inliced imaging with
ultrasound, e.g. to enhance endocardial border delimeatid to quantify organ
perfusion. A contrast agent solution contains microbubliéh a radius of 1 to
5 um. The bubbles are coated with a phospholipid monolayer tbr aspolymeric
shell to reduce the capillary pressure and to prevent them flissolving in the
blood. The compressibility of the microbubbles causes tteepulsate in response
to the driving pressure field which leads to a strong scatjegicho. The bubble
oscillations are strongly non-linear, which improves igcast with respect to
tissue, the non-linear behavior being even more enhancduelyon-linear mate-
rial properties of the bubble coating. Pulse-echo tectegdn medical ultrasound
imaging exploit the non-linear response of UCA microbubbkxamples include
pulse inversion imaging [5] and power modulation imaginp [6

An emerging application of UCA microbubbles is in moleculaaging with
ultrasound, where the coated bubbles are functionalizeéld aviargeting ligand,
which adheres to specific markers on endothelial cells. efeg allows for diag-
nosis at the cellular level and for local drug delivery aggtions [8, 9]. The close
proximity of the vessel wall changes the dynamics of the afiabbles. Assuming
potential flow, the interaction with the wall can be modelewugh the “method of
images” by placing a virtual bubble with identical souraesgth (the image bub-
ble) in the mirrored position of the wall plane. The modelsdict a decrease of the
resonance frequency and translatory oscillations neaw#fg29, 32, 105-109].
Other phenomena that possibly occur are shape oscillgia@&)or asymmetrical
collapse of the bubbles leading to jet formation [110, 1THe changed dynamics
of the bubbles has direct consequences for the applied mgggbtocols. On the
other hand, molecular imaging applications with ultragbwould greatly bene-
fit from an imaging modality that can acoustically distingjuifreely circulating
microbubbles from targeted ones.

The interaction of free gas bubbles of millimeter size withged wall is well-
understood, both theoretically [29, 105, 106] and expeniiadéy [110, 112, 113].
However, our understanding of the interaction of microgctpbbles with a wall
are rather limited because of experimental complexity.rbbabbles are difficult
to produce, they dissolve rapidly and single bubbles affcdif to image, both
acoustically and optically. For optical detection we neigghimagnification which
results in a very limited optical depth of field. Therefore tmicrobubbles are
usually confined in space through a cellulose membrane wat elastic capillary
fiber. Then to prevent bubble shrinkage these bubbles mustbbdized through
a surface active coating, which altogether results in alhigbhmplex bubble-wall
interaction as a result of many combined effects. Only a detaglecoupling of all
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contributing effects would allow us to fully understand bubble-wall interactions
for coated microbubbles. This would require, first, a fullerstanding of the non-
linear coated bubble behavior, which we derived in Chapte68cond, control
over the bubble position with respect to the wall, and finallgnodel that would
incorporate, in complex representation, the acoustic grit@s of the compliant
wall.

In chapter 6 the influence of a boundary on the dynamics oftaesIdCA micro-
bubble was investigated. Full control over the distancehtowall was assured
using an optical tweezers setup, which was combined to the-high speed cam-
era Brandaris 128 [39] to optically record the radial dynzsrof the microbubble.
The dynamics of a single bubble positioned at a distance @ffB@vas compared
to the dynamics of the very same bubble at the wall. The asitfttamd that the
amplitude of oscillations at the wall was over 50% lower thia@ response away
from the wall. From the reported experiments it was not cleaw far the influ-
ence of the wall on the bubble dynamics extends. Furtherntloeeexperiments
failed to identify the frequency dependence of the bubkddi-imteraction, which
is expected from previous work on mm-sized bubbles.

While the “method of images” facilitates the theoreticabcption of the in-
teraction of bubbles with an acoustically rigid wall, in expnent the bubbles are
contained in a capillary tube or a polystyrene cell, whigharoustically transpar-
ent. Recent numerical work is performed on the interactibunecoated bubbles
with elastic boundaries using the boundary element metB&) [114] and fi-
nite element method (FEM) [115]. Hagt al.[116] account for a bubble between
two compliant walls with a model similar to the “method of iges”, where the
complex source strength of the image bubble depends on thistazwall proper-
ties and the thickness of the wall. The model is applicablehimspholipid-coated
microbubbles.

Here, we investigate the interaction of a single UCA mictdiia with a thin
compliant wall. We explore the bubble dynamics above, atlzgidw the reso-
nance frequency. The distance from the wall is controllednieyans of an optical
tweezers setup. The insonation frequency is scanned tordatethe resonance
curve of the bubble at varying distances from the wall. Tiseilts of the experi-
ment are compared to the model by Heyal.[116], which explicitly accounts for
a compliant wall.

7.2 Theoretical background

The model by Hayet al. [116] accounts for the change of the radial dynamics of
a gas bubble as a result of its close proximity to a viscaelgdate. The bubble
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dynamics is described by:
. 3.

whereR s the time-dependent bubble radius, overdots indicaferdiftiation with
respect to timeBs is the pressure due to reflections from the plate Rgglis the
pressure at the bubble wall in the liquid. As explained in.[REE6], a theoretical
description for encapsulated bubbles may be obtained kstituting an appropri-
ate expression for the gas pressBggs For lipid encapsulated microbubbles the
appropriate expression for this pressure is given by:

( 20;5@) (B)" (1-2%)

R 20(R R
~Ro—P(t) — 4 é)—%@

(7.2)

whereRy is the equilibrium bubble radius. The fluid properties are dinsityp,
the kinematic viscosity, the speed of sound At the fast oscillations normally
imposed on the microbubbles it is assumed that the procéswée adiabatically
and the polytropic exponent i = 1.07 for G4F19 gas. The additional pressure
terms in the equation are the ambient pres§yr@nd the external driving pressure
P(t). The dilatational viscosity of the phospholipid coatinggigen byks. The
surface tension at the gas-liquid interface here is radamendent through a de-
pendence on the concentration of phospholipids on the bigalsface. A model to
account for the physical behavior of the viscoelastic shdlich includes elastic-
ity, viscosity, but also shell buckling and rupture, wasaduced by Marmottargt
al. [109] and is discussed in more detail in chapter 3. The abowdinear shell
behavior is described in the model in terms of an effectivéase tension in the
following way:

0 ifR<Ry
R? .
o(R)= X(@—]-) ifR, <R<R (7.3)
Ow if R>R

with the buckling radiusR,, the rupture radiug;, the shell elasticityy, and the
surface tension of the gas-water interfage= 0.072 N/m.
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Reflections from a planar wall may be included by introdudimg pressure term

Pref = Punn(t) xh(t) = —p +h(t)

r=R

ot

a—(p+%(D¢)2]

=p <RF&+ ng> «h(t) (7.4)

whereP,np is the pressure at the bubble wall in the unbounded fluid dymito
sation, = —RR/r is the velocity potential due to bubble pulsatidrit) is the
impulse response of the environment, amdenotes convolution. For a viscoelas-
tic wall the impulse respondgt) is the inverse Fourier transform of the frequency
domain quantity

Huai (69) = Ro. /O "KL %dK (7.5)

which represents the frequency response of the wall, detgang angular spec-
trum decomposition. In Eq. (7.3§, . denotes the reflection coefficient relating
the incidentL;,. and reflected componenitse; of the angular spectrum, which is
represented by longitudinal waves corresponding to wavebeuk, with k| the
eigenvalue of the longitudinal mode in the fluid. A completeiation of Eq. (7.5)
is provided in Ref. [116].

A
D Popticel, Yps, Lps

LincT lLref

A 4

Figure 7.1: Schematic drawing of the bubble near the OptiCell wall.

Calculation ofH(w) requires that the elastic parameters and density of the wall
to be known. The OptiCell membrane iDa= 75 um polystyrene layer with a
Young's modulustys = 3.3 GPa and a shear modulugs = 1.23 GPa, see Fig. 7.1.
The density of the material is obtained experimenta@ypticen = 1020 kg/ni.
Throughout the paper the OptiCell wall is referred to as aoa$astic wall and
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in all simulations we use the material properties as desdrdbove. The model
includes effects of both bulk longitudinal and transverssaves in the fluid and
wall as well as surface waves. The viscous boundary layea lthiskness of ap-
proximately & = /(2v/w) which is of the order of the bubble radius [116] and
is therefore negligible for distances larger than a few keilbédii. The dominant
material parameter influencing the bubble dynamics is tbeze¢he stiffness of the
wall material.

For comparison with the viscoelastic wall we also presestlte for a lossless
rigid wall. In this case the reflection coefficient becomeksfL

I:\’Oexp(Zioad/c) , (7.6)

Hrigid (w) = 24

or equivalentlyhigiq (t) = 6(t — 2d/c)Ro/2d, whered is the distance between the
bubble center and the wall. For the rigid wall, attenuatibthe reflected pressure
is due solely to spherical spreading over the round trimdise between the bubble
and wall (21), and the phase is shifted by the round-trip flight time.

7.2.1 Simulations

Simulations were performed on an uncoated bubble to exdhdé effects and
focus instead on effects purely due to the confining enviremis) i.e. a rigid wall
and a viscoelastic OptiCell wall. The material propertiethe OptiCell wall used
in the simulations are described in the previous sectiore Jds pressure in the
uncoated bubble is given by:

B 20y Ro 3 3kR
s (P“ﬁ) (%) (%)

R 20y
—PO—P(t)—4uﬁ—? (7.7)

The radius of the bubble is 1/5m and has a resonance frequency of 2.2 MHz in
the unbounded fluid. Fig. 7.2 shows the amplitude of osimltaés a function of
the distance for the rigid wall (A) and the OptiCell wall (E)he simulations were
performed for three different applied frequencies below above the resonance
frequency of the bubble in the unbounded fluid, and at a fregguéntermediate
to the resonance frequency of the bubble in the unbounded dhil that at the
wall. For both the rigid wall and the OptiCell wall, above saance the ampli-
tude decreases with decreasing distance from the wallevaleiow resonance the
amplitude increases with decreasing distance. Just bélewesonance frequency
in the free bubble case and above the resonance frequenbg dubble at the

112



7.2 THEORETICAL BACKGROUND
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Figure 7.2: Simulated response for an uncoated bubble with a radiusbofith and an
applied pressurB, = 10 kPa. The applied frequencies are below (blue) and abdaekib
the resonance frequency of the uncoated bubble in the undledifiuid. The dash-dotted
line shows the influence of the wall in the case the applieglfeacy is in between the res-
onance frequency of the free bubble and the bubble at th&red)l. A) bubble near a rigid
wall; B) bubble near a viscoelastic OptiCell wall. The matkproperties of the OptiCell
membrane are a 7%m thick polystyrene layer with a Young’s moduMs = 3.3 GPa, a
shear modulugips = 1.23 GPa, and a densipppticel = 1020 kg/ni, see Sec. 7.2.

wall the amplitude of oscillation first increases and theoreases with decreas-
ing distance from the wall. The maximum amplitude in casehef figid wall

is @ maximum of 2.5 times the amplitude of oscillation of thiblle in the un-
bounded fluidA"® = 2.5A4"®, while for the viscoelastic wall a maximum ampli-
tude of A'® = 2AU"0 s obtained. The influence of the rigid wall is still noticed a
a distancal = 40Ry, while no influence is observed @t> 25R; in case of the vis-
coelastic wall. However, at all distances from the wall idificult to distinguish
the response of the bubble at the rigid wall from that at tiseoelastic OptiCell
wall.

For a bubble at a wall (red) the amplitude of oscillationsadkulated as func-
tion of the frequency and plotted in Fig. 7.3. The influenceaaigid wall (A)
and a viscoelastic OptiCell wall (B) on the bubble dynamis @ompared with
the response in the unbounded fluid (blue). The amplitudesoiflation and the
frequency are normalized to the maximum amplitude of c&@ailh and the reso-
nance frequency of the bubble in the unbounded fluid, resseéct In both cases
the resonance frequency decreases with decreasing didtatice wall by about
20%. The rigid wall increases the maximum oscillation atagd slightly and its
contribution is found to be less than the increase expectad the “method of

113



7. COMPLIANT WALL INTERACTIONS
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Figure 7.3: Simulated resonance curve for an uncoated bubble with agadil.5um
for a bubble in the unbounded fluid (bluéys; = 100R) and at the wall (reddyar =
Rp). The resonance frequency and the amplitude of oscillai@nnormalized with the
response of the bubble in the unbounded fluid. A) bubble neaidwall; B) bubble
near a viscoelastic OptiCell wall. The material propertiethe OptiCell wall are given in
Sec.7.2.

images” due to the inclusion of the boundary layer in the rhotlee viscoelastic
wall on the other hand decreases the maximum oscillatiorlitug@. In conclu-
sion, the most noticeable difference between the intenaatf the bubble with the
rigid and the viscoelastic plate is expected for the maxinamplitude of oscil-
lation at the wall, which increases in the case of a rigidemefand decreases for
a viscoelastic plate. The relative change of the maximumliaudp of oscilla-
tion can be deduced from the resonance curve measured omdmiesavery same
bubble measured first in the unbounded fluid, then at the wall.

7.2.2 Nonlinear behavior of the coating

UCA microbubbles exhibit a strong nonlinear behavior mams a result of the
nonlinear behavior of the phospholipid-coating, see @rapt An increasing
acoustic pressure decreases the frequency of maximumnssxy more than
50%. The decrease is the origin of the so-called “threshgldboehavior, where a
small change in acoustic pressure causes a dramatic iedreise amplitude of
oscillation. The dynamics is well-described by the shaltkiing model proposed

by Marmottantet al.[12]. In chapter 3 the shell parameters were determined for
BR-14 microbubbles, which are also used in this study, gihanshell elasticity

X = 2.5 N/m and a shell viscositys = 6- 10~° kg/s. Even for apparently iden-
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tical bubbles the dynamics strongly varies, which washatted to a variation in
the initial surface concentration of phospholipids. Thievant shell parameter
here is the initial effective surface tensioriRy), which may vary between 0 and
0.072 N/m. Throughout the chapter we use the shell elastcitl shell viscosity
as given above. The initial surface tension will be obtaifredh the results far
away from the wall.

We will now investigate in what parameter regime the bubisdl- interaction
can be separated into changes in bubble dynamics due to nifieing wall and
those due to the lipid shell. Fig. 7.4A shows simulated rasoa curves of a
phospholipid-coated microbubble for varying initial sagé tensioner(Ry) (see
inset). The frequencies of maximum response of the “buckbedble (©(Ry) =
0 N/m) and the “elastic” bubblex(Ry) = oy/2) are very different. The amplitude
of oscillation is very different below the frequency of maxim responséyr of
the “elastic” bubble, while above the frequency of maxim@sponse the dynam-
ics of the bubble is less dependent@(Ry). The explanation is simple when we
consider the analogy of the linear response of the massespyistem: below res-
onance the stiffness mainly determines the amplitude aflason while above
resonance the system is inertia-driven [32]. The shell eftthbble increases the
stiffness of the system and is dominant below the frequefhoyagimum response,
while the shell has minimal influence above the frequency aximum response,

O'(RO) =0 N/m — P_=20kPa
G(RO) = O'W/4 —— Pa =40 kPa
G(RO) = GW/2 —— Pa =60 kPa
0.15 1 B
0.8
0.1
o g 0.6
< £ 04
0.05 ’
0.2
0 0
1 2 3 4 5 1 2 3 4 5
f (MHz) f (MHz)

Figure 7.4: Simulated resonance curves of a phospholipid-coated bulhtiie unbounded
fluid. The parameters afgy = 2.2 um, x = 2.5 N/m, ks = 6-10~° kg/s, anda,, =
0.072 N/m. A) Varying initial surface tensiors(Ry), P, = 30 kPa. B) Varying applied
acoustic pressurd, g(Ry) = 0.02 N/m.
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see also [83]. Therefore the dynamics of the bubble resengbfaore linear re-
sponse above the frequency of maximum response, which riakesponse much
more predictable. Furthermore, in chapter 3 it was foundatsirong decrease in
the frequency of maximum response was observed as a regb# abnlinear in-
fluence of the coating especially at low driving pressure laoges. This effect
can be appreciated in Fig. 7.4B where the simulated resenzunwes are plotted
for three different pressures. The amplitude of oscillatfq is divided by the
acoustic pressur, and then normalized by the maximum of the three curves for
easy comparisoA°"™ = (A1/Pa)norm. From both results we therefore conclude
that the influence of the phospholipid-coating can be minédiby insonifying
the bubble above its frequency of maximum response or diveiahigh acoustic
pressures. We should, on the other hand, avoid destruatidrstarinkage of the
bubbles and limit the amplitude of oscillations, which ar®wn to also change
the bubble dynamics.

7.3 Experimental methods

7.3.1 Setup

Fig. 7.5 shows the coupled optical tweezers and ultra-lpgled Brandaris 128 cam-
era [39] setup allowing for simultaneous micromanipulatai single microbub-
bles in 3D space and temporally resolving the bubble dyraniibe optical tweez-
ers consist of a 1064 nm CW laser (YLM-5, IPG Photonics) cdeeeinto a
Laguerre-Gaussian mode by a phase diffractive optical eheimplemented on
a spatial light modulator (X8267-15, Hamamatsu). Beforel&ser beam enters
the objective (LUMPLFL 100x, water immersed, NA = 1.00, Ofyus) the laser
lightis reflected by a dichroic mirror (CVI-laser), mouniad customized upright
BXFM Olympus microscope. The Brandaris 128 camera [39] hag&imum
framerate of 25 million frames per second (Mfps). Up to 6 mewf 128 frames
can be stored with a minimum time interval of 80 millisecoha$ore the data is
transferred to a PC. The Brandaris camera is designed to miseégmented mode
where 12 movies of 64 frames are recorded in a single run.

The 100x objective is used both for trapping and for imagifdghe bubble.
With a telescope (focal distances 125 and 150 mm) the dimesgef the laser
beam is adjusted to match the trapping and the imaging plemesample is back-
iluminated with an intense flashlight (MVS-7010, Perkihvier). The image is
transmitted by the dichroic mirror, then magnified with a 2agnifier (U-CA,
Olympus). A beam splitter reflects 80% of the light into theBdaris camera, the
remaining 20% is used for monitoring with a CCD camera (LQI29S, Watec).

A custom designed Perspex module, filled with demineralizatkr, holds the
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Figure 7.5: Schematic drawing of the setup (not to scale). The setup eativiided in
three parts the ultra-high speed Brandaris 128 cameraptieabtweezers setup, and the
Perspex module. The Brandaris camera can record up to 25avitpis described in detail
in [39]. The optical tweezers setup consists of a infrareériga spatial light modulator
and a telescope. The Brandaris camera and the tweezersasetapupled through the
same 100x objective. The Perspex module is designed to #i@nltrasound, the light
and the sample with the objective.
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light fiber and the transducer. The ultrasound contrasttagRnl4 (Bracco S.A.,
Geneva, Switzerland) is injected in an OptiG#I(Biocrystal, Inc.), which can be
moved separately from the Perspex module, and is mountedpoaftthe water
tank. The microbubbles were trapped near the upper walletptiCell. Two
translation stages (Thorlabs PT3/M) allowed to manuallywentine chamber in
xyz-direction. A motorized micro-translation stage (M@1aDG, PI) was used
for precise translation of the OptiCell along the z-directiwith a unidirectional
repeatability of 0.2um and a backlash smaller tharuin. The distance between
the bubble and the wall was changed by moving the OptiCellangsy while the
position of the trap remained unchanged. The OptiCell wasujded from the
Perspex module and therefore the bubble always stayed extw same position
with respect to the focus of the transducer.

The computer-generated driving pulse programmed in a M@Iacript was fed
to an arbitrary waveform generator AWG (8026, Tabor Elgtt®) and a power
amplifier (350L, ENI). A single element transducer (PAO8dedtsion Acoustics)
was calibrated with a 0.2 mm needle hydrophone (SN1143jdtwacAcoustics)
between 0.7 and 6 MHz and the amplitude of driving pulse waspemsated for
the frequency-dependent response of the transducer. Tgélef the driving
pulse was 8 cycles with a Gaussian envelop tapering the fistlast two cy-
cles. The applied pressure was chosen to be between 10 arfdac@elending
on the bubble radius, the applied frequency, and the distéom the wall. The
acoustical and optical focus were aligned with a@0diameter glass bead and a
pulse-receiver system (5077PR, Panametrics).

The timing error of the Brandaris camera master controfienfithe order of 1
frame, resulting in a maximum error of 70 ns at a framerateSoMips. In the
case where two or more(t)}-curves were recorded under identical conditions the
curves were correlated and a maximum time shift of 1 frameallaged.

7.3.2 Analysis

Each movie captures the radial dynamics at a single acopmgssure and fre-
quency. The radius vs. time curvR(f)}-curve) of the bubble was determined
by tracking the contour of the bubble in each frame with a qoagrammed in
Matlab®. Fig. 7.6A shows a typical oscillation of a bubble with a imgtra-
dius of Ry = 2 um which was insonified at a frequendy= 1.7 MHz and at an
acoustic pressurB, = 37.5 kPa. TheR(t}curve (blue) is Fourier-transformed to
a frequency domain representation, where we remove therkguéncy compo-
nent (red), which originates from the so-called “compr@ssinly” behavior [10].
Then the time-domain is reconstructed by an inverse Fotraesform of the fil-
tered result, see Fig. 7.6B. For a detailed explanation sapter 4. We use as a
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Figure 7.6: A) ExperimentaR(t)-curve (blue) of a BR-14 microbubble in the unbounded
fluid with a radiusRy = 2 um insonified with an acoustic pressuPg= 37.5 kPa and a
frequencyf = 1.7 MHz and the low frequency component (red). B) The relativeda-
mental responsg

measure for the maximum radial excursion at the fundaméegliencyA;:

S:[nax_ Sjr_nin
Al=——— (7.8)
2

wheree["™® is the maximum relative expansion agfi”" the minimum relative ex-
pansion, see Fig. 7.6. The response of the bubble from thdadions is obtained
with the same procedure. The absolute error in the radidlaigms is 40 nm, see
chapter 8. For a typical bubble with a radigg= 2 um this corresponds to a noise
level of the oscillation amplitud@; of approximately 0.02.

7.3.3 Distance from the wall

TheR(t)}-curves of individual bubbles were recorded at variousadists from the
wall by micromanipulation of the bubble position with thetiopl tweezers. To
exclude a potential disruption of the bubble behavior byl#dser radiation the
bubble dynamics was recorded with the bubble released fnenréap. The laser
beam was momentarily blocked (order s) and a photodiodealsigggered the
recording mode in the master controller of the Brandaris d@&8&era. When the
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laser beam passage was cleared the bubble was instanpiedragain. We define
the distance from the watl,5; as Oum when the bubble is in contact with the
wall. In this case the center of the bubble is at a distackEom the wall.

7.3.4 Resonance curves

To investigate the influence of the wall on the resonanceufray the Brandaris
camera was running in the segmented mode recording 12 movig$ frames.
This mode allowed us to perform a spectroscopic investigatf the microbubble
response, as described by Van der Meeal. [41]. The bubble response was
recorded 12 times; one recording without ultrasound aned&drdings at different
frequencies. while recording the amplitude response. &asdund was send in
the first movie. The total time of a single run of 12 recordimgss of the order of
1 s. It therefore required the optical tweezers system topleeational during the
spectroscopy experiment to prevent the bubble from risirigpbfocus.

The optical trapping forcBr counterbalances the buoyancy foFgegneglecting
the gravity force) and is given by:

Fr=Fs=p0\s
11 A
1
o
&
™ o9}
* laseron

osl e laser off
o> 0.03} B
T oMW W A p
<-0.03} . . . .

t (us)

Figure 7.7: The laser trap has no influence on the bubble dynamics. THedmzoustic
pulse has a pressure of 150 kPa and a frequency of 2.25 MHzbdiitdeRy = 2.6 um

is positioned at a distance of §0m from the wall. A) Radius-time curves of a bubble
with the laser on (red) and the laser off (blue) show no chande=havior. B) Residue
AR = Riaser on— Riaser oft The standard deviation is 0.01, the mean of the residueasd,
the frequency domain shows that the residue contains onlgwbise.
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with p; the density of the liquidg the gravity andvg the volume of the bubble.
The force is in the order of 0.1 pN for a 1/5m radius bubble and 5 pN for a
5 um radius bubble. An estimate of the force associated withbtiigble wall
acceleration, is given by the added mass force:

Fm = CumpoVeR

with Cy = 1/2 the added mass coefficient aRdhe bubble wall acceleration. For
an applied frequency of 2 MHz and an amplitude of oscilla#gr= 0.1 the added
mass force is of the order of O{N for a 1.5um radius bubble and 2QN for

a 5 um radius bubble. The added mass force is therefore 6 ordersgghitude
larger than that of the trapping force. To confirm experiratythat the laser trap
indeed does not change the bubble dynamics, ten bubblesngergfied with the
laser trap on and off. No substantial difference was observéhese experiments,
as expected, see Fig. 7.7.

7.4 Results

Fig. 7.8 shows the results of an experimental interrogatiba single micro-
bubble with a radiugg = 2.9 um at a series of distances away from the wall.
The bubble was insonified with a driving pressure pulse (8esycfrequency
f = 2.25 MHz and a pressure, = 30 kPa), see Fig. 7.8A. The distances fange
from 0 to 200um from the wall. R(t}-curves of the bubble at 4 distances from
the wall @wan = 20050,10 and Oum) are shown in Fig. 7.8B-E. The distance
between the bubble and the wall was first decreased from 20Qto (blue) and
then increased again from 0 to 20én (red). The reproducibility of thR(t}-curves
verifies that the change in the dynamics of the bubbles isechiog the interaction
with the wall, not by a change in the bubble properties. Tweat$ in the radial
dynamics of the bubble are observed with changing distamore the wall. First,
the amplitude of oscillation decreases with decreasin@uii to the wall, which
is in agreement with the observations shown in chapter Gorgkche oscillations
of the bubble far from the wallgyar = 200 um, start att ~ 3 us, at ultrasound
arrival, while the response of the bubble at the wéjk; = 0 um, is delayed by
another microsecond, which corresponds to 2 cycles ofadtnad or 15 samples
of the high-speed camera. As the second effect is a transifaat which is en-
hanced by the phospholipid coating, not by the bubble-wdd#raction, we will
focus her only on the change in the maximum amplitude of lasicihs.

The relative amplitude of oscillatioA; is obtained from thé&(t)}-curves and is
plotted as a function of the distance from the wall (circleslig. 7.9. At a dis-
tance of 200um the amplitude of oscillatior; is 0.07. The bubble experiences
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Figure 7.8: The bubble is insonified twice to assure the repeatabilitthefexperiment
(dashed line). A) shows the applied acoustic pulse with gueacyf = 2.25 MHz and
a pressurd’, = 30 kPa. B-E) ExperimentaR(t)) curves for a single bubble witRy =
2.9 um at distances between 200 ang® from the wall.
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no interaction with the wall as a decrease in the distancg slightly decreases
the amplitude of oscillation. Even at a distartlg = 30 um the amplitude of os-
cillation is still relatively high,A; = 0.06. The amplitude of oscillation decreases
rapidly for distancesl, < 30 um and the responss; is 0.03 at the wall. The
experimental results are compared to the models accoufttiregcompliant wall
(blue) and for a rigid wall (red). The initial surface tensiof the bubble is taken
to beg(Rp) = 0.02 N/m to match the amplitude of oscillation s = 200 um.
The trend of a decreasing response with decreasing distartice wall as well as
the ratio of the amplitude in free space and that at the wall ggialitative agree-
ment with the models accounting for a compliant and a rigidl.wa deviation
between the experiments and simulations is found only diogbe wall at dis-
tancesdya > 30 um as both models show a faster decrease in the response close
to the wall than was observed in experiments. At a distan@® pfim a small peak

is observed in the simulation accounting for the compliaall wFurther research
will be performed to find an explanation for this peak.

8
U
<\—1

Experiment

Rigid wall
Compliant wall

0 50 100 150 200
dwall (Hm)

Figure 7.9: The relative amplitude of oscillatioA;, as defined in Eqg. 7.8. The bubble
oscillates above its frequency of maximum resporgds derived from the experimental
R(t)}-curves at distances between 0 and 200 from the wall (circles), which are partly
shown in Fig. 7.8. The radius of the bublitg¢ = 2.9 um and the ultrasound pulse has a
frequency of 2.25 MHz and an acoustic pressure of 30 kPa. I8tions with the model ac-
counting for a viscoelastic OptiCell wall (blue) and a rigidll (red) are shown. The prop-
erties of the OptiCell wall and the phospholipid coatingltd shell are given in Sec. 7.2.
The initial surface tension is(Ry) = 0.02 N/m.
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7. COMPLIANT WALL INTERACTIONS

In the previous experiment we experienced a considerafilesirce of the wall
on the bubble dynamics at distances beliyy < 30 um, which is not reflected
in the model. To investigate the bubble behavior near resmave scan the in-
sonation frequency to measure the resonance curves forkdelbRp= 2.2 um
at distances between 0 and 206 from the wall, see Fig. 7.10A. The bubble is
insonated with a pressui® = 30 kPa and the amplitude of oscillations is kept
relatively IargeAg"R > 0.08 to minimize nonlinear effects due to the phospholipid-
coating, see chapter 3. The resonance curve was first mdasuree wall dya =
0 um (squares), and in the following frequency scan the digtdram the wall
was increased up to the maximum distadgg = 200 um (circles). Resonance
curves were measured at intermediate distances from thefad, = 5,10, 20,
50,100 um (dots). A second resonance curve measured at the wahdkeis)
concludes the set of resonance experiments. The resuli® sesonance exper-
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Figure 7.10: Experimental resonance curves for a buliRle= 2.2 um at distances be-
tween 0 (squares and triangles) and 200 (cirqgles) The applied pressure is 30 kPa while
the frequency is scanned between 1.5 and 3 MHz.
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Figure 7.11: Simulation results for a bubble with a radius of Zuéh at distances between

0 um (blue thick line) and 20@um (red thick line). The applied pressure is 30 kPa. The
simulations on the bubble dynamics account for a rigid wa)lgnd an OptiCell wall (B).
The initial surface tensioo(Ry) = 0.02 N/m. The other shell parameters as well as the
material properties of the OptiCell wall are given in Se@..7.
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iments confirm that the wall decreases the frequency of maximesponse and
the maximum amplitude of oscillatioA’i"R. As soon as the bubble is positioned
closer to the wall, we first observe a decrease of the resptiveea change of the
frequency of maximum response is observed, but only versecto the wall, at
Oyan < 10 um.
The experiments are compared to simulations accountinthéorigid wall and
the compliant wall, see Fig.7.11. The initial surface tensi(Ry) = 0.02 N/m
is optimized to the shape of the resonance curve, the amducbmpression-
only” behavior observed in thR(t}-curves (data not shown), and the frequency
of maximum response al,;; = 200 um. Both models predict a decrease of the
frequency of maximum responggr of approximately 20%, from 2.0 to 1.6 MHz,
when approaching the wall, which is similar to the experitaéy obtained change
of the frequency of maximum response. In the case of the waitithe proximity
of the wall increases the response, while the presence ohplant wall decreases
the response. The experiments resemble the modeled bebbaicompliant wall.
In agreement with the experiments, the model also predietisthe change of the
frequency of maximum response occurs mainly in the firsuf®from the wall,
while the change in amplitude is still appreciated at ladistances from the wall.
The experimental results are compared to the simulatiarthéocompliant wall
in more detail in Fig. 7.12, where we find overall good agregimé&he frequency
of maximum response as a function of the distance from théisvai excellent
agreement (Fig. 7.12A). The maximum amplitude of oscdta‘rAg"R decreases
with decreasing distance to the wall both in the experimantsthe simulations,
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“_E
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A B
1.4 0
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Figure 7.12: Comparison between the experimental results and the diongaccounting
for a viscoelastic OptiCell wall as shown in Fig. 7.10 andl7.Erequency of maximum
response (A) and maximum amplitude of oscillat®ff (B). Parameters as in Fig. 7.11B.
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see Fig. 7.10B. Nonetheless, there is still a small discrepaf about 20%.

We now investigate the dynamics of coated bubbles intergatiith a com-
pliant wall while the bubbles are driven below their freqoygmf maximum re-
sponse. Below the frequency of maximum response the namlipehavior of
the coating is expected to contribute significantly to théklie dynamics. A
bubbleRy = 2.9 um is insonified at a pressure Bf = 40 kPa and a frequency
f =1 MHz, which is just below the resonance frequency of an uecbbubble.
At a distanced,y = 200 um the relative amplitude of oscillation &; = 0.14.
The responsé\; decreases with decreasing distance to the wall éati= 0.03
at the wall,dys = 0 um, see Fig. 7.13. Simulations performed with the model
accounting for the compliant wall (blue) predict a very mudmnstant response
upon approach to the wall and a rapid increase in the ampliaidoscillation
very close to the wall, contrary to the experimental obg@ma The initial sur-
face tensioro(Rp) = 0.01 N/m was obtained from the amplitude of oscillation at
dwai = 200 um. Simulations performed for differemt(Ry) do not change the ob-
served trend. It is quite remarkable that the amplitude oillason of the bubble
oscillating above the frequency of maximum response isqreadantly disturbed
at close distances from the wall (below @), while the bubble oscillating below
the frequency of maximum response shows an influence up siande of at least
150 um away from the wall.

To investigate the influence of the phospholipid-coatingh@observed devia-
tions between the experiments and simulations below tlygiérecy of maximum
response in more detail we measured the resonance curvem#éir amplitude
oscillations. Fig. 7.14A shows the resonance curve of aleuRp= 2.5 um at
three different distances from the wallys; = 0, 50, and 150um, and an acous-
tic pressure?, = 20 kPa. The response far from the wall is twice as large as the
response at the wall, very similar to the changes found inFip. On the other
hand, the frequency of maximum response of the bubble at #fiesshigher than
the frequency of maximum response away from the wadl,at = 150 um, while
the wall was expected to decrease the frequency of maximsponse with 20%.
The resonance curves were also obtained at a series of aistbeetween 0 and
150 um and Fig. 7.14 show the influence of the wall as a function efdistance
below (B) and above (C) the frequency of maximum response.ré@$ponse below
the frequency of maximum response is similar tot that of Fig3 (f = 1.9 MHz)
the wall influences the responée even at a distanca, g = 150 um. Above the
frequency of maximum responsé € 2.3 MHz) the respons#; is unchanged for
distancesyq > 50 um, as was observed before in Fig. 7.9.

127



7. COMPLIANT WALL INTERACTIONS

0.25

O Experiment
Compliant wall

Error: 1

0 50 100 150 200
dwaII (um)

Figure 7.13: The relative amplitude of oscillatiofy for a bubble insonified just below its
frequency of maximum response. The bubRle= 2.9 um is insonified with a frequency
f =1 MHz and a pressurig, = 40 kPa. Simulations performed with(Ry) = 0.01 N/m
accounting for a viscoelastic OptiCell wall. Other paraangtfas described in Sec. 7.2.
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Figure 7.14: The relative amplitude of oscillatioA; for varying frequencies and dis-
tances. The bubblgy = 2.5 um is insonified with an acoustic pressife= 20 kPa. The

resonance curves of the bubble at three distances from théA)aA; as a function of the

distance from the wall insonified with a frequentty= 1.9 MHz just below the frequency
of maximum response (B) and insonified with a frequefey 2.3 MHz just above the
frequency of maximum response (C).
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7.5 Discussion

The experimental results and the numerical solutions, sisctine ones depicted
in Fig. 7.9-7.14, provide us with a couple of important olvaéions. The first ob-
servation is that if the shell has a minor influence, i.e. wienbubble is driven
above its frequency of maximum response or at an elevatsgyme such that the
maximum bubble respongé'R > 0.1, the experimental trend is well-predicted by
the model accounting for a compliant wall. The proximity bétwall decreases
the frequency of maximum response with 20% and it only adféloce frequency
of maximum response at distanogg < 5Rg. The amplitude of oscillation at
the frequency of maximum response on the other hand is chaatgistances up
to 50Ry. The amplitude of oscillation of a bubble oscillating abagefrequency
of maximum response decreases with decreasing distante wall and devi-
ations between the experiments and simulations are onlgrodd at distances
smaller than 1Bg from the wall. On the contrary, when the bubble is driven$n it
stiffness-dominated regime, i.e. when the phospholipiatiog has a substantial
influence on the dynamics of the UCA microbubbles, a remaekdifference was
found between the experiment and simulations. Insonagtowbthe frequency of
maximum response causes a decrease of the bubble responsd decreasing
distance to the wall, while the opposite is expected fronsthrulations. Further-
more the simulations predict a decrease in the frequencyagfmum response of
20%, while in experiments a slightly higher frequency of imaxm response is
observed at low amplitude oscillations, with a maximum cesgA)'R < 0.1, at
the wall as compared to far from the wall. We will thereforewfarst discuss the
possible mechanisms and potential flaws in the model or erpat, which may
lead to the observed mismatch close to the wall, see FigSe&ond, we will dis-
cus the inconsistent behavior observed far from the wallnithe bubble is driven
below resonance, as depicted in Figs. 7.13 and 7.14B.

One of the assumptions in the model is that the bubble rensaimsrical during
oscillation. The dynamics of the bubbles is recorded in tegyvperpendicular to
the wall, and the oscillations of the microbubble appearsiliate purely spheri-
cal. Experiments with a setup allowing simultaneous ofzems in top and side
view of microbubbles oscillating near a wall by Vesal. [38, 117] showed that
oscillations can appear perfectly spherical in top view highly non-spherical
in side view. The authors also showed that the non-spheargmllations become
more pronounced with increasing pressure. At an appliedsdicopressure near
30 kPa, which are those used in the experiments described@significant os-
cillations of a non-spherical nature were observed. Furbee, Strassberg [102]
showed numerically that non-spherical oscillations dosigiificantly contribute
to a change of the resonance frequency and the amplitudecidiibens at reso-
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nance.

It was shown by Vot al. [38, 117] that bubbles translate close to a wall.
Translatory oscillations were not included in the numeérinadel and could not
be observed in the experiment as a result of the optical amafign, viewing the
bubble in top view. An estimate of the secondary radiatiarcedp which drives
the translatory oscillations (see chapter 8), shows tleafdtce rapidly decreases
with increasing distance from the wall, following &dg,, wall dependence. In
conclusion, deviations due to non-spherical oscillatemd translatory oscillations
are expected to be mainly important in very close proxinotyhe wall.

We now discuss the influence of the coating as the main disnogpwas found
for a bubble driven below resonance, where the coating hasmgsinfluence on
the bubble dynamics. An important consideration is thanawe to a distance
of 150 um (dway = 50Rp) changes in the bubble respornsgwere observed. As
pointed out before, translatory oscillations and non-gphkoscillations are neg-
ligible at these distances and cannot explain deviatiortkeste large distances.
The non-linear contribution of the phospholipid-coating the bubble dynam-
ics is fully included in the numerical model. It was shown lmapter 3 that the
shell-buckling model can predict the dynamics of the pho8pid-coated BR-14
microbubble very accurately for the full parameter spac&axfuency and pres-
sure. Here we also use BR-14 microbubbles, and the shelngdess are well-
known: x = 2.5 N/m andks = 6-10~° kg/s (chapter 3). The third shell parameter
depends on the initial concentration of phospholipids enstirface of the bubble
and is expressed in the initial surface tensiiRy). The response of the bubble
depends strongly on the value @fRy), see chapter 3. We obtainRy) from the
amplitude of oscillation of the bubble at a distamg; = 200 m and we verified
that the observed decrease of the bubble respéngdth decreasingl,y does not
depend oro(Ry). We therefore have full knowledge over the bubble shell prop
erties. In addition, as discussed in the experimental nastisection no deflation
of the bubble was observed and therefore no change of thdebpbdperties is
expected. The experiments also confirm that indeed idértatzavior was mea-
sured, both for a series of measurements where the bubbleeasd away from
the wall, thereby increasing the amplitude of oscillatiaswell as an experiment
where the bubble was moved closer to the wall.

In chapter 3 we found that the frequency of maximum respoapertis strongly
on the driving pressurB, as a result of the nonlinear shell behavior. A decrease
of 50% can be observed while increasing the driving presdihe behavior is
reproduced in Fig. 7.15. In section 7.2 the compliance ofihk is modeled by
a pressure termer which depends on the sound radiated by the bubble and the
complex reflection coefficient of the wall. The direct cougliof P with the
radial oscillations of the bubble changes a priori the sygbeoperties. The real
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part of the reflected sound is similar in a qualitative sesdte compliant wall
and for the rigid wall and changes the eigenfrequency ofytkem. The imaginary
part of the reflected sound wave is very different for the tyyes of walls and can
be seen as a change in the damping of the system. In the cédmeaaihpliant wall
the decrease of the bubble response can be attributed te@ased damping of
the system.

To investigate the effect of damping on the frequency of maxh response we
performed simulations, included in Fig. 7.15. The simolasi were performed
with the shell-buckling model for a phospholipid-coatedcrabubble in the un-
bounded fluid [12]. The maximum amplitude of oscillation wased by changing
the damping (red) and the acoustic pressure (blue). Theidgropthe system was
increased, by changing the shell viscosity betwees 4-107° to 6- 108 kg/s, to
cover a change of the maximum bubble respoi¥8 from 0.04 to 0.07, similar
values as those obtained in Fig. 7.14. The acoustic presmsevaried between
P, =7 to 22 kPa. Fig. 7.15 shows that in this regime a decreaseadfeéhjuency
of maximum response of approximately 20% is observed whertiving pres-
sure is changed, while almost no change in the frequency &imnuen response
is observed when the damping is changed. This exercise stimawvshe higher
frequency of maximum response observed at the wall (FigA).inight be a sig-

3.5

f s (MHZ)

Figure 7.15: Simulated frequency of maximum resporfgg: as a function of the max-
imum amplitude of oscillatiomA)!R. The simulations were performed with the shell-
buckling model [12] for a bubble with a radi® = 2.5 pum in the unbounded fluidd}'R

is changed by changing the applied acoustic pref3utdue) and the damping (red). The
shell elasticityor(0) = 0.02 N/m and the shell elasticity = 2.5 N/m. In case of a change
in the acoustic pressure (blue), the shell viscosity: 6-—° kg/s and the acoustic pressure
is varied betweeR,; = 7 to 22 kPa. In case of a change in the damping (red), the acoust
pressuré; = 20 kPa and the shell viscosity is varied betwegn:- 4-10°to 6-10 8 kg/s.
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7. COMPLIANT WALL INTERACTIONS

nature of a change in the primary pressure field, which we wal/ explore in
more detail in the following.

The numerical model describing the bubble-wall interactimcludes the reflec-
tion of the sound radiated by the oscillating bubble withraage bubble approach.
It is assumed that the bubble emits the sound as a point sowbat is not in-
cluded in the model is the reflection of the wall of the primargonifying ultra-
sound wave. Due to the reflection of the primary wave the l®ibluld experience
a slightly different driving pressure field, both in amptiaias well as in phase. The
primary ultrasound wave and its reflection can be descrigeddtane wave, there-
fore the reflected wave must be considered even for bubbkiiqreed far away
from the wall. As shown in chapter 3 the so-called “thresimgtl behavior can
cause a dramatic change in the bubble response below theefreg of maximum
response for a change of the driving pressure of only a feaeper And therefore,
even though the reflection itself is expected to contribpteownly 10% of the total
insonation pressure, we feel very much inclined to explaendtriking difference
between experiment and numerical simulations below thrgufecy of maximum
response by a combined effect of the reflection of the prinudinasound beam
and the nonlinear response caused by the phospholipiegedabble.

While the pressure amplitude of the reflected primary wave g&timated to
contribute up to a maximum of 10% of the total pressure, itmmex behavior
in phase space as a result of the compliance of the wall is mate difficult
to incorporate into our current model. Measurements of gerbprofile of the
transmitted wave as a function of the angle of incidence ana fainction of the
acoustic properties of the compliant wall material havelead to a quantitative
and conclusive answer on the complex wave reflection prigigertt should also
be noted that the measurement presented in Fig. 7.13 waslaoktedious ex-
periments on tens of bubbles. Most of the bubbles would slibwsreno change of
their response with changing distance or no response &klal.is now the more
understandable: bubbles above resonance indeed show mgecimaibbles below
resonance show no response and only a very small selectimrbbfes would be
excited right near their “threshold”. Through our very date control over bub-
ble position with the optical tweezers, and hence the daution of the reflected
wave in amplitude and phase, we were able to map out and futhgiextremely
responsive details of the thresholding step with greatracgyu

7.6 Conclusions
We investigated the interaction of an UCA microbubble witithen compliant

wall. The non-linear influence of the coating on the bubblaaiyics was min-
imized by insonation of the bubble above resonance or atiardes of oscillation
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AYR > 0.1. In the case where the shell has minor influence both theriexpets
and simulations showed that the frequency of maximum respds decreased
with 20% at the wall with respect to a bubble far from the wdalhe frequency
of maximum response is decreased only at distances smiadierdR, from the
wall. At the wall the amplitude of oscillation at the frequgnof maximum re-
sponse is about half the amplitude of the bubble far from tak Wwn the case the
coating dominates the bubble dynamics, large deviatioapaasent between the
experimental results and the simulated results. In exparisnthe proximity of
the OptiCell wall decreases the response of the bubble gvém B0 bubble radii
away, while the simulations show an increase in the dynamees the wall and
only for distances less than BR9from the wall. As shown in chapter 3 below the
frequency of maximum response the dynamics of the bubbkeasgly nonlinear
and a small increase in the acoustic pressure can cause atitramrease in the
amplitude of oscillation (so-called “thresholding” befay, which allows for an
extremely sensitive evaluation of the bubble-wall intécars.
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Bubble-bubble interactions:
oscillatory translations?

In this chapter the unsteady translation of coated micrdibe propelled by acous-
tic radiation force is studied experimentally. A systemwad pulsating microbub-
bles of the type used as contrast agent in ultrasound meidnzaging is considered,
which attract each other as a result of secondary BjerknesefdOptical tweezers
are used to isolate the bubble pair from neighboring bouregrso that it can
be regarded as if in an unbounded fluid, and the hydrodynaorae$ acting on
the system can be identified unambiguously. The radial antskational dynam-
ics, excited by a 2.25 MHz ultrasound wave, is recorded withil&ra-high speed
camera at 15 million frames per second. The time-resolveasarements reveal a
quasi-steady component of the translational velocity,rat@erage translational
Reynolds numbgiRg) ~ 0.5, and an oscillatory component at the same frequency
as the radial pulsations, as predicted by existing modelsceSthe coating en-
forces a no-slip boundary condition, an increased viscdasigation is expected
due to the oscillatory component, similar to the case of amillating rigid sphere
that was first described by Stokes [Trans. Camb. Phil. $&c(1851)]. A history
force term is therefore included in the force balance, infiven originally pro-
posed by Basset and extended to the case of time-dependarg by Takemura
and Magnaudet [Phys. Fluid347, 3247 (2004)]. The instantaneous values of the
hydrodynamic forces extracted from the experimental datdian that the history
force accounts for the largest part of the viscous force. hgectories of the
bubbles predicted by numerically solving the equationsatfon are in very good
agreement with experiment.

1published as: V. Garbin, B. Dollet, M. Overvelde, D. CojocDEFabrizio, L. van Wijgaarden,
A. Prosperetti, N. de Jong, D. Lohse, M. Versluiistory force on coated microbubbles propelled
by ultrasound Physics of Fluid®1 (2009)
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8.1 Introduction

Bubbles in a sound wave translate unsteadily under theractian effective force
Fe(t) = =V (t)Op(t), whereV(t) is the volume andIp(t) is the local instanta-
neous pressure gradient. In a sound waygt) is oscillatory, and the bubble vol-
umeV (t) pulsates, resulting in a force, known as acoustic radidtoce, which
periodically changes both direction and magnitude [50]e Tarresponding mo-
tion of the bubble is an oscillatory translation, at the &rexacy of the radial pul-
sations, around a position that slowly drifts. The time ager of the acoustic
radiation forceFgj = —(V (t)0p(t)), the so-called Bjerknes force, is non-zero and
results in the net translation of a bubble. If the sound waxénd) such motion is
the secondary wave emitted by a neighboring pulsating leulzbinutual interac-
tion comes into effect and two bubbles pulsating in phasadateach other. The
average force is then called secondary Bjerknes force.

The translation of uncoated bubbles due to acoustic radifdrces has been the
subject of numerous studies over the past decades, only affefich are men-
tioned here. Crum and Eller [118] and Crum [119] validatedregsions for the
primary and secondary Bjerknes forces against experirn@aita by measuring the
mean terminal velocity of mm-sized bubbles. Good agreemkatime-averaged
equation of motion with experiment was found by balancing Bjerknes force
with a quasi-steady drag force. Indeed, flow oscillationgehao effect on the
mean terminal velocity if the governing equations can bediized. According
to the analysis of Landau and Lifshitz [120], for a sphere atfius R oscillat-
ing with frequencyw and amplitudes, the convective terntv- ()v is of order
w?a® /R, and therefore it can be neglected comparedwtdt ~ w?a for oscilla-
tions of small amplitudea < R, which appears to be the case in the experiments
of Crum [118, 119]. Oguz and Prosperetti [121] developedgproximate for-
mulation for the instantaneous dynamics of two interachingbles to investigate
the influence of nonlinear effects. From numerical caléoifest, a richer behavior
was found than what is predicted by the linear theory of Bjeskforces, although
viscous effects were neglected. Reddy and Szeri [122], innaenical study on
the propulsion of microbubbles by traveling ultrasound egg\vincluded viscous
effects through the expression obtained by Magnaudet agéridze [123] for
shear-free bubbles with time-dependent radius. The Ristoce was found to
be unimportant, consistent with the criterion given in R&23] that it plays a role
only if at least one of the two Reynolds numbeRg andRe, is smaller than 1.
HereRg = R|U|/v is the Reynolds number for the translation @&l = R|R|/v
the one for the radial dynamics.

History force effects have been shown to be important foasfree bubbles, for
instance in single bubble sonoluminescence [124]. It i$ kvedwn that the history
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8.1 INTRODUCTION

force on arigid sphere is much larger than on a shear-freergph25], and surfac-
tant molecules adsorbed on the surface of a bubble changbelaefree boundary
condition to a no-slip one [126]. For the oscillatory motioha rigid sphere, an
increased viscous dissipation is to be expected since tiieityoremains confined
in an oscillatory boundary layer of thickneds- /w/v, wherew is the frequency
of the oscillations and the kinematic viscosity of the liquid. The Basset history
integral [127] generalizes to an arbitrary velocity theregsion for the drag on an
oscillating sphere that was first obtained by Stokes [128)ké&s’ solution for an
oscillating sphere was also found by Mei [129] to reprodingertumerical solution
of the full Navier-Stokes equation in the limit of high frezpcy of oscillations. An
expression for the history force on a no-slip bubble withetidependent radius was
derived and validated experimentally by Takemura and Madeia[130] at finite
Re.

Bubbles whose surface is immobilized by surfactants arewerered in a num-
ber of contexts, and they have proven particularly benéficialtrasound medi-
cal imaging. In this application, contrast enhancemenbtaioed by injecting in
the blood vessels microscopic gas bubbles [88], rangingzanfsom 1 to 5um,
coated by design with a surfactant monolayer to stabilisentlagainst dissolu-
tion. Several models have been proposed to describe that effa coating on the
radial dynamics of a pulsating microbubble [12, 33, 34, 3B]contrast, its influ-
ence on the markedly unsteady translation in an ultrasoetd tias hardly been
treated. Emerging applications of contrast agent micrblagbin drug delivery
and targeted molecular imaging [8, 9, 131] demand a deemlarsianding of the
behavior on the time scale of competing phenomena, fornastéhe binding to
target molecules or the interaction with the blood vessélsw&hese applications
ultimately require a detailed description of timstantaneousranslation ofcoated
microbubbles. The first experimental study on the instartas translation of con-
trast agent microbubbles in a traveling ultrasound waveDaytonet al. [132],
compared time-resolved optical observations with a dynahtmodel which in-
cluded a finite-Reynolds-number empirical extension ofghasi-steady drag on
a no-slip bubble. The authors observed that such a modermsgsitally overpre-
dicted the total displacement, and ascribed the discrgp@nthe fact that in the
experiment the bubbles were in contact with the top wall efsample chamber
due to buoyancy, with the attendant difficulty of quantityiie friction coefficient
between a bubble and the wall.

The purpose of the present chapter is to provide a timewvedaflescription
of the unsteady translation of coated microbubbles predddly ultrasound. We
consider a system of two bubbles translating due to theiuaiuadiation force,
which offers the advantage that the pressure gradient obunige is known with
great accuracy from the time-resolved observations ofdald@l and translational
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dynamics of the neighboring bubble. We predict the trajgesoof the two bubbles
with the aid of the measured radial dynamics, and invegtiga influence of the
history force in a range of parameters (bubble $Rgeviscosity of the fluidv,
frequencyw, relative radial excursioAR/Rp) of interest for medical ultrasound
imaging.

8.2 Effect of confining geometry: micromanipulation of
bubbles

Isolating bubbles from the walls of the container greatiydifies the problem of
determining the forces acting on them. Here we use opticeéhers to position
bubbles at a prescribed distance from the sample chambkrikal experimental
technique is described in Sec. 8.3. As sketched in Fig. @&lajbble pair is
pushed downward and away from the wall, with the line of cenparallel to the
wall. The bubbles can be held in the prescribed positionHerduration of the
experiment. We therefore avoid the problem, encounteredaygonet al. [132],
of sliding friction at the wall.

The influence of a rigid wall on the flow field can be modeled mittviscid case
through the method of images where the wall is replaced bst@abiparticle which
mirrors the dynamics of the real particle and generates atfiaity by canceling
out the primary flow, satisfies the zero normal velocity ctiodiat the wall. In

@ micrpsqope (b) [0do i 014ps 0.28 us 0.42 us 0.56 us 0.70 us 0.84 us
objective ® 00 0 0% 00 0% o

% 0.98 us 112 ps 1.26 us 1.40 ps 1.54 us 1.68 us 1.82 us
s ® 20 0% 0° 2000 0 o0

ser 196us  210us  224us  238us  252us  266us  280ps
® 90 0 * 2P 9O ee 2 S0
_é_ 284us  308ps  322us  336ps  350us  364ps  37Bps
ultrasound o e 0 %0 0 %o

transducer

Figure 8.1: Observations of the dynamics of two coated bubbles in Wdtrad. a) Layout

of the experiment (side view). A microscope objective isdugefocus the laser traps (op-
tical tweezers) and for transmission imaging. The directibincidence of the ultrasound
beam is orthogonal to the line of centerd) Frames from an ultra-high speed time series
of bubble dynamics (top view). The recording is taken at 8illon frames per second,
corresponding to an interframe time of 70 ns. Here only esecpnd frame is shown. The
black crosses in the first and last frame indicate the inptisiitions of the bubble centers.
The distance between the bubbles decreases due to the agc8ijretknes force. White
scale bar: fum.
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our experiments the sample chamber wall is not perfectli;ritpr a partially
transparent wall the following considerations do not #iribold, but the effect of
arigid wall can be considered as a limiting case.

The quasi-steady drags for a sphere translating near a rigid boundary can
be written agrqs= —67 yRU, wherey is Faxén’s correction factor. Up to third
order in the parametd®/r, whereR is the sphere radius andthe distance from
the boundary, one hgs= (1— 9/16(R/r) + 1/8(R/r)3) " see [133]. FOR/r ~
1/20, the typical value in our experiments, the drag is in@ddsy less than 5%.

The image of a pulsating bubble also generates a spherival, wéth the result
that an acoustic radiation force arises between the bubizettee wall through
the coupling of the bubble and its image. The acoustic radigbrce between
pulsating bubbles is derived in Sec. 8.4. The leading tempenis or(R/r)?, and
therefore forR/r ~ 1/20 the net attraction force to the wall becomes negligible.
Incidentally, this force acts in a direction orthogonalhe tine of centers (see Fig.
8.1a) and would not affect the force balance in the direatibinterest.

By positioning the bubbles at least 20 radii away from thel wed therefore
minimize the effect of reflections on the translational dyies, so that the bubbles
can be regarded as if in an unbounded liquid. In eliminatiregé disturbances we
can focus on the forces acting on the bubbles purely due totdection with the
liquid.

8.3 Experimental procedure

The facilities and protocols used in this study to simultarsty control the ex-
perimental conditions with optical tweezers and opticadigord the dynamics of
microbubbles in ultrasound have been presented in chapsed6/. The opti-
cal tweezers setup was based on an upright microscope (@Qg)nmpodified to
couple a laser beam into a water-immersed>1@bjective lens (Olympus, N.A.
1.00). A strongly focused Gaussian beam is known to prodticeea-dimensional
optical trap for dielectric microparticles with a refraetiindex greater than the
surrounding medium. Since a bubble has a lower refractidexrthan the sur-
rounding liquid, a suitable optical trap consists in thiseaf a laser beam ex-
hibiting a minimum of intensity on the optical axis, such asaguerre-Gaussian
beam [134]. We produced the intensity distribution reqliice generate two traps
by converting a 1064 nm continuous-wave linearly polarizeser beam (CVI)
through a computer-generated phase diffractive optieasheht. The implementa-
tion of diffractive optical elements on a spatial light méator device enabled us
to adjust in real-time the separation distance betweerrdps {58].

A suspension of microbubbles of an experimental phospidetipated ultra-
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sound contrast agent (Bracco S.A., Geneva, Switzerland)inj@cted in a cham-
ber enclosed by two optically clear polystyrene matrix meanbs (Opticell,
Thermo Fisher Scientific) which ensure high acoustic trassion. We selected
pairs of bubbles with a size close to the resonant size fdirdogiency of the driv-
ing ultrasound, set the initial distance between the centard positioned them
away from the wall using a micropositioning stage. The charmias coupled to a
single-frequency unfocused ultrasound transducer (Peimis) by immersion in
a water bath. An 8-cycle 2.25 MHz ultrasound pulse with a @e&paussian taper
was produced by a waveform generator (Tabor Electroniatpamplified by a RF
power amplifier (ENI) before being transmitted by the traresd. The ultrasound
beam overlapped with the focal volume of the microscopeablg and its angle
of incidence with the optical axigz {n Fig. 8.1a) was 4% so that the acoustic re-
flection from the objective did not reach the bubbles. Furtluee, the direction
of incidence of the beam was orthogonal to the line of cer{teins Fig. 8.1a) to
decouple the effects of the primary acoustic radiationgdrom the mutual inter-
action through the secondary acoustic radiation force.séingple was illuminated
from below and the same microscope objective that was usttts the optical
traps was used to produce a top view transmission image,njurction with a
2x magnifier. The ultra-high speed digital camera Brandar® [B®] recorded
the dynamics at near 15 million frames per second, correipgrio a temporal
resolution under 70 ns.

Fig. 8.1b shows 28 frames extracted from the movie of two ofigbbles un-
dergoing radial pulsations and experiencing mutual dttmac The marks in the
first and last frame indicate the initial positions of the blgbcenters. The bubbles
remain spherical during the radial pulsations; we dischedexperiments where
the bubbles significantly deviate from spherical symmetiyp prevent optical
forces from interfering with the dynamics, the laser wa®ftyiblocked during
the recording, even though the magnitude of the opticalefancthe horizontal
plane & 1011 N) is four orders of magnitude smaller than the secondarystio
radiation force we typically measure.

The radius and position as a function of time are extractewh fhe 128 frames
of each recording, using the minimum cost tracking algarittlescribed in [41].
The optical resolution is 100 nm per pixel; image analysssiits in sub-pixel res-
olution on the extracted quantities, with a typical accyrat30— 40 nm for the
radius and 76- 80 nm for the distance. The pattern of rings generated imtlage
plane by the Mie scattering of light transmitted by a bubt&5] introduces an ex-
perimental uncertainty in setting the in-focus positiormdifubble. This ultimately
leads to a systematic uncertainty in the determination @finftial bubble radius
for each experimental run, and the edge detected throughitiiemum cost algo-
rithm may not correspond to the correct radius. By condgcéirseries of control
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experiments where the focus of the image was varied we dstiih@maximum
systematic uncertainty of 10%.

The radius-time and distance-time curves obtained frongérteacking were
resampled using a cubic interpolation and filtered usingvadass filter to remove
high-frequency noise. The frequency components of theendisse to the fre-
guency of oscillations cannot be removed by filtering. Tfees we impose the
radius before and after oscillations to be equal to themgstadius, or else the
residual noise would give rise to an apparent acoustic tiadidorce. The maxi-
mum difference between the processed data and the measteeddints is less
than 3%. This is taken as the maximum error on the radius atdrtie data, and
is used to estimate the error on the derived quantities. Rhenesampled and
filtered data we compute the radial and translational vééscand accelerations.

8.4 Hydrodynamic model

The system of coordinates is shown in Fig. 8.2. We taéitong the line of centers
of the two bubbles with radiuR; andRy; the distance between the bubblesl is
X2 — X1. Buoyancy and the primary radiation force act along a divaarthogonal
to x and do not affect the translation in the-direction. From conservation of
momentum one has the force balance inxlairection for a bubble of radiuR:

4 ,Du 1 d /4 v [t dr d(RU)
— p-TRP— —Zp— ( =iR*U | — 67 RU— hdl
0=p3™M 5 2pdt<3 U) 6rmRU 67Tp\/7T/o (iR s O
T
= Fe+Fa+ Fos+ F
(8.1)

U = x—uis the velocity of the bubble relative to the fluidthe velocity of the bub-
ble relative to the laboratory frame, with the dot repreisgndifferentiation with
respect to timed/dt is the time derivative on the particle trajectonythe veloc-
ity of the fluid, initially quiescent, generated by the dynesnof the neighboring
bubble, andu/dt is evaluated on the fluid trajectory.

The first term in the r.h.s. is the force due to the accelaratigparted to the
fluid by the neighboring bubble, i.e. the radiation presdstiedue to the sec-
ondary ultrasound wave emitted by a pulsating bubble, tegure gradient being
dp/dx = —p Du/Dt; if convective effects are negligible, as is the case hére, i
reduces t@dp/dx = —p du/dt. The second term is the added mass fd¥g®n
a sphere, which is independent of the boundary conditioncdriie Reynolds
number [125]. Note that, sincR is time-dependent, the added mass force is
Fa=-1/2pd/dt(4/3 TR%U) = —mp (2/3 R%U + 2R?RU). The third termFqs,
accounts for the quasi-steady component of the viscous fmd the last term for
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6
X1

Figure 8.2: System of coordinate® (i = 1,2) is the radius of bubblieandx; its position
on the line of centers. r; denotes the position of a fluid element relative to bulbble

the unsteady component through the history fofge, A boundary condition of
no-slip is assumed at the bubble interface, which is fullgniobilized by the layer
of surfactant molecules. The quasi-steady drag only dependhe instantaneous
values ofR(t) andU (t). The modification of the kernel of the history integral that
accounts for time-dependent radius effects was first inzed by Magnaudet and
Legendre for bubbles with shear-free boundary conditi®@8]land subsequently
extended by Takemura and Magnaudet to the case of bubbleshia a no-slip
condition [130]. The integral is evaluated from the tiine O when the bubbles
start oscillating. Fot < O the velocity of the bubbles is zero, and so is the inte-
gral for —o < t < 0. The velocity of the fluid generated by bubhlés evaluated
at the center of bubble(i,j = 1,2, i # j), assuming that the other bubble is ab-
sent and that the flow is spatially uniform. The frequencynsbnationf = 2.25
MHz corresponds to a boundary layer of thicknéss 300 nm, and in this study
we only consider bubbles of radifis~ 2 um. When the viscous boundary layer
on the bubble is small with respect to the radids< R, or wR? > v), as is the
case here, we may use inviscid theory for determining the flelocity outside
the boundary layer. A pulsating and translating bubble gdas a fluid veloc-
ity at distancer whose potential has a contribution from a source of streqgth
®s = —q/4mr, due to the radial pulsations, with the kinematic boundanydition
that the velocity at = R equalsR, and a contribution from a dipole of strengph
®p = —pcosh/4mr?, due to the translation, with given by the boundary condi-
tion that the velocity at = Ris equal tox. The fluid velocityu is the sum of the
two velocitiesu = u; + i = Rcos® R2/r2+x R¥/r3 (8 = 0, m). If the distance
between the bubbles becomes small, the assumption of omifow breaks down.
In addition, if the wall-to-wall distance between the bugsbbecomes comparable
with the thickness of the boundary laydr- (R + Rz) ~ 298, a description of the
viscous dissipation in the boundary layer becomes negesgér limit ourselves
to the casel — (R1 + Rz) > 20.

By substituting in Equation 8.1 for bubbiehe fluid velocity generated by bubble
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j and retaining terms up to order 3 Ryd, we obtain two coupled equations of
motion, identical to this order of accuracy to those obtaibg other authors using
a Lagrangian formalism [107, 108, 136]. The difference vpitbvious models is
in the terms that account for viscous effects, since onhaisfree bubbles were
considered before.

The resulting equation of motion describes the translatiba no-slip bubble
for a given radial dynamics. The radial dynamics can be nsatl#irough two
coupled Rayleigh-Plesset-type equations [107, 108, 1@@}led to the translation
equations. For coated bubbles this would introduce at teasfitting parameters
[12, 33, 34, 36] to describe the viscoelastic propertieshefdoating. For most
coating materials the parameters are not known with sat@fa accuracy, and
may depend on the dilatational rate [41]. Therefore, we upergnental values
of Ry, Ry and their derivatives as time-dependent coefficients.

The numerical integration of the history force was treatecm approximate
fashion to handle the singularity at=t in the kernel of the history integral:

/0th (/Tt R(s)zds> 71/2d(RU)/dr.

The integral in the interval0,t — dt] can be evaluated using standard numerical
schemes. By defining the nonlinear mappéhg [; R(s)~?dswe write the integral
near the singularity as:

o(t) _12
/ d6 (6(t) — B(t —dt))"Y2d(RU)/d6.
Jo(t—dt)

Since in our experimentd(RU)/d8 varies slowly near the singularity, it can be
taken as constant over the inter{f@(t — dt), 6(t)] and the resulting integral can be
evaluated analytically. We tested our approximation ajdhre numerical scheme
proposed by Chung [137], which is commonly used to compuéisiory integral
[130, 138], and found the results to agree to within 0.5%.

8.5 Results and discussion

Fig. 8.3A and 8.3B show the time evolution of the radius oftthe bubbles and the
distanced between their centers. The radial pulsations are in phaseawelative
radial excursiomMR/Ry < 0.3. The positions of the centers display small trans-
lational oscillations, (typical amplitude 260300 nm) with the same frequency
as the radial pulsations, around a position that slowlytgrifesulting in the net
attraction expected for bubbles pulsating in phase. Wherexternal forcing is
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turned off, and the radial pulsations have dampedtowt3.6 us), the bubbles de-
celerate subject only to viscous drag. Fig. 8.3C and 8.3Wvsltlee time evolution

of the Reynolds numberRg = R|R|/v for the radial dynamics ande = RlU|/v

for the translation. The values of the Reynolds numbersnduttie motion are
below 5 for the translation and below 25 for the radial dyremniThe time aver-
ages ardRq) ~ 0.5 and(Rg) =~ 3, respectively. Therefore, we hypothesize that
high-Reeffects can be neglected in the translational dynamicsssumaption that

is confirmeda posteriori We also expect that time-dependent radius effects do
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Figure 8.3: (A) Time evolution of the radii obtained by image trackindhelsolid symbols
represent experimental data points, and the lines the medrand filtered radius-time
curves. The bubbles oscillate in phase and have relativel raxtursionsAR/Ry ~ 0.3.
(B) Time evolution of the distance between the centdrs, X, — x;. The solid symbols
represent experimental data points, and the line the rdsdnapd filtered distance-time
curve. (C-D) Time evolution of the Reynolds numbers comgditem the experimental
radial and translational dynamics. Only the values for lpeifitare plotted for clarity. The
radial Reynolds numbeRe = R|R|/v is below 25 with a time averagfRe) ~ 3. The
translational Reynolds numbBe = RU|/v is below 5 with a time averagd&e) ~ 0.5.
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8.5 RESULTS AND DISCUSSION

not significantly influence the transport of vorticity, buéwse the version of the
history force for a bubble with time-dependent radius fangistency.

Following Takemura and Magnaudet [130], we begin our amglipy deter-
mining the values ofa(t), Fg(t), Fos(t) and Fy(t) from the experimental val-
ues ofRy(t), Rx(t), d(t) and their derivatives. We can then test the expression
for the viscous forcéqs+ Ry against the value deduced from the force balance,
Fos+ Fu = —(Fa+Fg). The comparison is shown in Fig. 8.4. The value of the
viscous force determined from experiment is indicated leyrtéd line. The black
line shows that the zerBeexpression foFgs+ Fy shown in Equation 8.1 gives a
good prediction of the viscous force. The valuggkis also plotted (blue line) to
emphasize how neglecting the history force would resuli@mge underestimation
of the total viscous force.

Since the governing equations can be linearized if convedifects are negli-
gible, the velocity can be decomposed into its quasi-steautlyoscillatory com-
ponents. The oscillatory component experiences an inededscous dissipation,
since the vorticity generated at the bubble surface doesliffate away during
one period of oscillation and remains confined to the visdsusndary layer of
thicknessd ~ /v /w. The drag force experienced by an oscillating sphere can be

t (us)

Figure 8.4: Comparison of models for the viscous force. The values argabed for one
bubble from the experimental values of the radius and posénd their derivatives. Red
line: experimental value from the force balaneéa + Fg). The red symbols show the
values corresponding to the experimental data points.kBiae: model including quasi-
steady drag and history forégys+ F+. Blue line: a model including only quasi-steady
dragFgs, neglecting history force, largely underestimates visagigsipation.
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8.5

6.5

t(us)

Figure 8.5: Time evolution of the distance between the centers of thélegb Red line:
experimental value (after resampling and filtering). The sgmbols are the measured
data points. Blue line: prediction using the model inclgdiistory force and quasi-steady
drag,Fos+ F4. The shaded area represents the tolerare®%) on the prediction due to
the systematic experimental uncertainty on the restingisaaf a bubble. Inset: compari-
son of the model including only the quasi-steady dfgg(black) with the model including
history force Fos+ F4 (blue).

estimated, in the high-frequency limit, asn$(1+ R/d)RU [120]. In the range
of parameters of our experiments, the drag on the osci¥latomponent of the
velocity is increased by a fact¢t + R/d) ~ 5 compared to the quasi-steady value
61 RU. The Basset expression for the history force is only syrieélid at zero
Reynolds number, or for an oscillatory motion. The maintation in the applica-
bility of this expression to the present case is probablyrthé? time decay, which
was observed to be too slow for a particle accelerating fresh [139] and is not
strictly valid for the quasi-steady component of the vdloci

We now proceed to test the performance of the model by irntiegréhe equa-
tions of motion and predicting the displacement of the bebbllhe experimental
values ofR;(t), Rx(t) and their derivatives are substituted in the equations ef mo
tion as time-dependent coefficients, and the equationsngegrated numerically
to obtain the time evolution of; (t) andx,(t). The agreement between the pre-
dicted displacement and the experiment is fully satisfgctas shown in Fig. 8.5.
The comparison with the result obtained by neglecting tistohy force (inset)
emphasizes again how crucial the influence of this forceri€dated bubbles as
opposed to shear-free bubbles. As described in Sectiofio8.8ach experimental
run the extracted bubble radii can differ from the true raldie to the systematic
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8.6 SUMMARY AND CONCLUSIONS

uncertainty in the imaging. To test the robustness of ouiirfgslin this respect,
we compute the numerical solution for two limiting casBs; 5%. The solution
corresponding to the true radd;, R, then lies in the shaded area in Fig. 8.5. The
prediction remains highly satisfactory and the model camded to predict the
low-Re translation of coated bubbles of known radius due to acouwatliation
pressure.

8.6 Summary and Conclusions

We performed a time-resolved study of the translation ofembanicrobubbles pro-
pelled by ultrasound radiation pressure in a range of paiem#hat is relevant for
medical ultrasound imaging. By positioning the bubbleshvaptical tweezers
we were able to exclude the influence of confining geometmelsta unambigu-
ously identify the contributions of the several hydrodyi@aforces acting on the
bubbles. The use of an ultra-high speed camera operated Benillion frames
per second ensured the required temporal resolution t@ctegsize the unsteady
translation of the bubbles. We developed a point-partictelehto describe the
translation of bubbles subject to secondary radiationspiresdue to a neighboring
pulsating bubble, and found that the inclusion of the hisforce is crucial for
a correct description of the unsteady motion of coated rhidobles. Neglecting
this force results in a large underestimation of the visabssipation. This can be
understood from the fact that the translational velocity &a oscillatory compo-
nent, which experiences an increased dissipation due tosti#latory boundary
layer that develops around the bubble.

One of the limits of applicability of this model is that thelles should be
far enough from each other so that the approximation of umiflow holds, and
dissipative effects in the boundary layer are unimportdnt (Ry + Ry) > 20).
Furthermore we restricted ourselves to the case of sphdxitdoles, an approx-
imation that breaks down when the bubbles get too close. dfgyelr insonation
pulses the bubbles are often observed to lose their sphsyicanetry, with non-
spherical oscillations arising as a parametric instabjB5]. Viscous effects are
then more difficult to account for [140].
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Dynamics of coated bubbles
adherent to a wall'

Molecular imaging with ultrasound is a promising non-inives technique for
disease-specific imaging, enabling for instance the diagnof thrombus and in-
flammation. Selective imaging is performed by using ulwasiocontrast agents
containing ligands on their shell, which bind specificallythe target molecules.
Here, we investigate the influence of adherence on the dgsawhihe microbub-
bles, in particular on the frequency of maximum responseetgrding the radial
response of individual microbubbles as a function of thdiepgpcoustic pressure
and frequency. The frequency of maximum response of admieobubbles was
found to be over 50% lower than for bubbles in the unboundédi diad over 30%
lower than that of a bubble in contact with the wall. The charggcaused by adhe-
sion of the bubbles to the wall as no influence was found sbietiie presence of
the targeting ligands on the bubble dynamics. The shift inftbquency of maxi-
mum response may prove to be important for molecular imagpudications with
ultrasound as these applications would benefit from an d@isaging method
to distinguish adherent from freely circulating microbigsh

IM. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, andVrsluis
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9. ADHERENT BUBBLE DYNAMICS

9.1 Introduction

The use of ultrasound contrast agents in medical imaginlg witasound is well
established. The contrast agent is injected intravenoastl/is designed to en-
hance the contrast of the blood pool. The most common ulirasoontrast agent
(UCA) is composed of a suspension of microbubbles (radiGsuin), which are
coated with a phospholipid, albumin or polymer shell. Thatocw reduces the
surface tensiow and therefore the capillary pressure/R. Moreover the coat-
ing increases the diffusive timescales and the combinedtgiirevents the bubble
from quickly dissolving in the blood.

A promising application is non-invasive molecular imagiog selective diag-
nosis with ultrasound using ultrasound contrast agentse ultnasound contrast
agent microbubbles contain targeting ligands that bincelective biomarkers on
the membrane of endothelial cells, which constitute thedleessel wall. A se-
ries of challenges are encountered in the development gétiedt microbubbles
for molecular imaging applications. The first question, a&s\stated by Lindner
[8], is whether bubbles adhering to a target cell producengtrenough acoustic
signals. It was found that the response of adherent mictmbals comparable
to that of phospholipid-coated microbubbles [96, 97]. Hegrgit remains to be
seen if the concentration of adherent microbublitesivo will be high enough
to produce signals in the order of normal contrast-enhamndtegsound in perfu-
sion imaging. In the extreme limit even the signal of a singldble must be
detected. Another challenge that has received significimnteon is the adhe-
sion of the bubbles to the vessel wall under shear flow. Pyimediation force
has been used to effectively push the bubbles towards tlseMds2, 141-144].
New biochemical engineering of the ligands has lead to a odeth increase the
number of adherent microbubbles. The use of two distinébady-receptor pairs
has been proposed [145], as well as the use of a polymeriorens$ the ligand
to increase the ligand surface density [146, 147], and tleeofisncreasing the
length of the spacer arm [148]. Finally, one would be ableistGrejuish adherent
microbubbles from freely circulating ones [8]. The simplagproach is to wash-
out all the freely circulating microbubbles and image th@aing bubbles. The
disadvantage is that it takes 5 to 10 minutes before allyfreetulating bubbles
are cleared by the liver and that there is no new supply of lesbbTlherefore it
would be beneficial to distinguish acoustically betweeneaeht and freely cir-
culating microbubbles. Considerable changes betweerremnthend non-adherent
microbubbles were found, such as a decrease in the acoestiorrse of adherent
microbubbles with respect to non-adherent microbubblé§dfd a change in the
spectral response [97]. In chapters 6 and 7 of this thesiastshiown that the close
proximity of a wall changes the bubble dynamics. As the bebloirculate freely
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9.2 EXPERIMENTAL METHODS

in the blood vessel, their position with respect to the walimknown. Therefore
it is important to understand the influence of adherence t@laam the bubble
dynamics. Furthermore, we would like to investigate undbatconditions the
response of adherent and freely circulating can be differterd, as to optimize
them for pulse-echo techniques.

Here, we investigate the change in the dynamics of adherenbibubbles with
respect to bubbles in the unbounded fluid. In Sec. 9.2 we itbestire setup, ex-
perimental methods and the preparation of the bubbles. ffheehce of targeting
ligands, the proximity of the wall, and the adhesion to théd aigthe frequency of
maximum response and the amplitude of oscillation will bevathand discussed
in the Sec. 9.3. The conclusions and an outlook on futurererpats are given in
Sec. 9.4.

9.2 Experimental methods

9.2.1 Setup

Fig. 9.1 shows a schematic drawing of the experimental sé&nptiCell cham-
ber was mounted in a water tank and connected to a 3D mictapusg stage.
The water tank was mounted on a planar-stage and was dedighetd an illu-
mination fiber and the ultrasound transducer (PA168, Hogri&coustics). The
driving pulse for the transducer was generated by an arpitreveform gen-
erator (8026, Tabor Electronics) and amplified by a RF-&limpl{350L, ENI).
The sample was imaged through an upright microscope eqlipitb a water-
immersed 108 objective (Olympus). The dynamics of individual microbidsb
was captured with the ultra high-speed camera Brandarig33&t a framerate
of 14 million frames per second (Mfps). An optical tweezestup allowed for
the positioning of a single microbubble in 3D [58]. The im&d laser beam of
the optical tweezers was coupled into the microscope usthighaoic mirror. The
optical trap was formed through the imaging objective. Téies combining the
Brandaris 128 camera with optical tweezers is describe@tailcchapter 6 and 7.

The bubbles were insonified with an ultrasound burst of 1Gesywhose first and
last 3 cycles were tapered with a Gaussian envelope. To Bedrefjuency with a
constant acoustic pressure , the transducer was calilpetedo the experiments
with a needle hydrophone (HPMO02/1, Precision Acoustics)align the acoustic
focus of the transducer and the optical focus of the objedine OptiCell was
removed, the tip of the hydrophone was positioned in thedafuthe objective,
and the transducer was aligned with the planar-stage. Th&t&f® connected to
the OptiCell chamber allowed for the movement of the sampilependently of
the transducer to keep the acoustical and optical focusealig
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To Brandaris camera

To Optical Tweezers Setup
— Dichroic Mirror

Motorized
z-stage

Objective

OptiCell
Y 3D
S s 2 | W stage
Amplifier
z Yy
\
Transducerl planar stage y

Illumination

Figure 9.1: Schematic drawing of the experimental setup. The solut@riaining con-
trast agent microbubbles is injected in an OptiCell chamibbe chamber is located in a
water tank which holds the transducer and illumination fibée driving ultrasound pulse
is produced by an arbitrary waveform generator (AWG), afigalj and sent to the trans-
ducer. The bubbles are imaged and manipulated with optiegzers through the same
100x objective.

The experimental protocol is based on the microbubble spstipy method by
Van der Meeret al. [41]. Each resonance curve is a result 12 movies with the
Brandaris 128 camera with increasing frequencies at conat@ustic pressure.
The experiment was repeated several times for increasimgstc pressure on the
very same bubble, until the full parameter space of acopstiesure and frequency
ranges was covered. Control experiments to confirm that dtdle properties
were not altered by this protocol of repeated insonationsegound in Chapter 3.

Far from the wall

Individual microbubbles were trapped with the optical teers and positioned
away from the OptiCell wall to study their dynamics in the apgmation of
unbounded fluid. A motorized stage (M110-2.DGm, PI) was useaccurately
control the distance between the bubble in the trap and theC€pwall. In all
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9.2 EXPERIMENTAL METHODS

experiments the minimum distance between the bubble andahevas 100um.
The laser trap was turned on during the experiments to preékierbubbles from
rising out of the optical focus due to buoyancy. In chapterwas demonstrated
that the laser trap does not influence the radial dynamickeobubbles. Twelve
movies of 128 frames were recorded in 2 runs with the Brasdamera. The
second run started after the data of the first run was traesféo the computer.
The time between the two runs is of the order of 20 s and the lhietereen two
movies is 80 ms. The bubble was insonified with a ultrasourskpat 12 different
frequencies and at constant acoustic pressure.

At the wall

The optical tweezers were not used for the experiments omubéles in con-
tact with the wall and those adherent to the wall. During ¢hesperiments the
Brandaris camera was running in a segmented mode, whichealois to record
12 movies of 64 frames in a single run. The time between thdesavas 80 ms.
No ultrasound was applied during the first movie. In the conee 11 movies
the insonation frequency was changed while the pressur&epdsonstant.

9.2.2 Analysis

Each movie captures the radial dynamics at a single acopsggsure and fre-
quency. The radius-time curvR(t)-curve) of the bubble was determined by track-
ing the contour of the bubble in each frame with a code prograchin Matlat®.
Fig. 9.2A shows a typical oscillation of a bubble (blue) wathadiusRy = 2 um
insonified with an ultrasound pulse at a frequericy 1.7 MHz and at an acoustic
pressure?, = 37.5 kPa. The compression phase of the oscillations is larger th
the expansion phase, which refers to the so-called “cormjpre®nly” behavior of
an oscillating bubble [10], which results in a low frequeromponent (red) dur-
ing insonation. For the analysis we use the relative exaansear the fundamental
frequencye;, see Fig. 9.2B. As there are minor amplitudes of higher harcso
observed in the spectral responses, only the lower frequemmponents are re-
moved, for more information see chapter 4. The maximum ra&adieursionA; is

defined as: .
max min

Al =
1 2 )

wheree" is the maximum relative expansion agfi" the minimum relative ex-
pansion, see Fig. 9.2B.

The absolute error in the radial oscillations is 40 nm, sesptdr 8. For a typi-
cal bubble with a radiu®y = 2um, AQO‘S‘% 0.02. We use the non-dimensional

(9.1)
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R (um)

Figure 9.2: A) Experimental radius-timeR(t) curve (blue) of a BR-14 micro-
bubbleRy = 2 um insonified with an acoustic pressuPg= 37.5 kPa and a frequency
f = 1.7 MHz and the low frequency respongg(red). B) The relative fundamental re-
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Figure 9.3: Experimental resonance curve (circles) as a function of2. The bubble has
a radiusRy = 2 um and is insonified with an acoustic pressBge= 32.5 kPa. We obtain
the frequency of maximum respon@gr and the maximum relative respon&?R from
the resonance curve. The simulations are performed witlstie# buckling model [12]
(line). The shell parameters aye= 2.5 N/m, ks = 5-10~9 kg/s, ando (Ry) = 0.025 N/m.
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frequencyQ to compare the results with the well-known response of aoated

bubble:
f

Q= fone (9.2)
with the eigenfrequency of the uncoated bubble [29, 30]:
1 1 20y,
unc _ " - _ "
fo - = 27‘[\] R <3KF’0+(3K 1) Ro) (9.3)

The frequency of maximum respon€gr and the maximum relative amplitude
of oscillation A’i"R is obtained from the resonance curvAs,as a function of,
see Fig. 9.3.

9.2.3 Preparation

The experimental contrast agents BG-6437 and BG-6438 ¢(Br&cA., Geneva,
Switzerland) were prepared following the protocol desmtibelow. The BG-6437
bubbles were prepared by injecting 1 ml of sterile saliner@mB, 0.9% Sodium
Chloride) through the rubber cover of the vial, while a setnaedle was used for
venting the excess pressure. The vial was shaken for 5-16 shansuspension
was left to rest for 5 minutes. BG-6438 is similar to BG-6437ile/the shell con-
tains streptavidin. The BG-6438 microbubbles were redionst following the
same protocol (0.7 ml of sterile saline). A solution of bigtated anti-fluorescein
antibody (anti-FITC, 1Qug in 300ul of saline solution) was injected through the
rubber cover of the reconstituted vial, while venting theess pressure. The vial
was shaken and incubation took place for 10 minutes at roompeeature. All
prepared microbubbles were used within the same day.

The OptiCell was coated in the following manner. Fluoresdabeled bovine
serum albumin (FITC-BSA) was diluted in phosphate-buffesaline (PBS, pH
7.4, GIBCO, 10010023) to a concentration of 0.1 mg/l. TheiQgit was filled
with this solution and incubation took place overnight atmotemperature. Before
usage, the OptiCell was rinsed 3 times with PBS and finallyag filled with 10 ml
of sterile saline solution.

9.2.4 Method

We investigated the radial dynamics of 2 different types GfAUmicrobubbles for
a total of 4 different situations. The dynamics of a phosjpidicoated BG-6437
microbubble was measured far away from the wall to obtainvibeoelastic pa-
rameters of the shell [12], see Fig. 9.4A. To investigateriflaence of antibodies
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on the dynamics of phospholipid-coated microbubbles thalt® were compared
to the functionalized BG-6438 microbubbles, see Fig. 9.HBthe experiment
these microbubbles were positioned far away from the wadixidude the influ-
ence of the boundary. In the third experiment the BG-643#abighble was in
contact with the wall, see Fig. 9.4C. The results of a BG-6d@3ble at the wall
and in free space were compared to confirm the influence ofdbedary as dis-
cussed in chapter 7. In the previous three experiments thieldsiwere injected
in an uncoated OptiCell. In the fourth experiment the funwilized BG-6438 mi-
crobubbles adhere to the inside of an OptiCell coated witABEC solution.
The schematic of this situation is shown in Fig. 9.4D and & fibllowing these
bubbles are referred to as adherent bubbles.

BG-6437 BG-6438

Free

Wall

PEG

biotin
streptavidin
anti-FITC
FITC-BSA C D

<.l-<-o-o&

Figure 9.4: Schematic drawing of the 4 experimental situations. A) Phospid coated
microbubble away from the wall. B) Functionalized microbigaway from the wall. C)
Phospholipid bubble floating at the OptiCell wall. D) Functalized microbubble adher-
ent to the FITC-BSA coated wall.
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9.3 Results and discussion

Fig. 9.5A shows the frequency of maximum respofgr as a function of the
maximum amplitude of oscillatio)!R. The results for a phospholipid-coated
microbubble (circles) are compared to a functionalizedrafiabble (squares). The
radius of both microbubbles is@um and the applied pressure and frequency are
scanned to recover the full parameter space fRym= 15 to 45 kPa and from

f =1.2to 4 MHz. The bubbles are located in the unbounded fluid attanlie of
150 um from the OptiCell wall.

We observe a decrease @) r with increasingP,. At small amplitude oscil-
lations AR ~ 0.05 the frequency of maximum responseQigr ~ 2. For larger
amplitude of oscillatiorAg"R > 0.15 the frequency of maximum response tends to
converges t@Qyr = 1.3. The obtained frequency of maximum response is very
similar to the frequency2yr of phospholipid-coated BR-14 microbubbles, see
chapter 3. Simulations with the shell-buckling model (setails in chapter 3) are
depicted in Fig. 9.5A and are in good agreement with the éxertal results,
except maybe at an amplitud@R > 0.15 where a small deviation is encountered.

The relative amplitude of oscillation 8tyr as a function of the driving pressure
Psis shown in Fig. 9.5B. The smallest oscillations are obskatean acoustic pres-
sureP, = 20 kPa. The increase of the maximum amplitude of oscillatih the
acoustic pressure is very similar for phospholipid-coateédrobubbles and func-

2.5 0.25
(@) BG6437
O BG6438 0.2
2 simulation
. x 015
GE §<‘—1
0.1
15
0.05
B
1 0
0 005 01 015 0.2 0.25 0 10 20 30 40 50
AMR Pa(kPa)

1

Figure 9.5: Response of a phospholipid-coated microbubble (BG-643d paunctional-
ized microbubble (BG-6438) in the unbounded fluid, both waittradiusRy = 2 um. The
simulations are performed with the shell buckling model][1Phe shell parameters are
X =2.5N/m,ks=5-10"2kg/s, ando(Ry) = 0.025 N/m. A) The frequency of maximum
respons@yr as a function of the amplitude of oscillatiédf'R. B) A/'R as a function of
the applied acoustic pressu?g
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Figure 9.6: Response of a phospholipid-coated microbubble (BG-643fH) avradius
Ry = 2 um far away from the walldya = O um, blue) and the response of a BG-6437
bubble with a radiu®y = 2.1 um at the wall @ya1—0 um, green). A) The frequency of
maximum respons@yr as a function of the amplitude of oscillatied'R. B) AYR as a
function of the applied acoustic pressiie

tionalized microbubbles. The nonlinear increase of thelnae AY'R with pres-

sure is in excellent agreement with the prediction of thél-dhekling model [12].

The shell parameters aye= 2.5 N/m, ks =5-10"% kg/s, ando (Ry) = 0.025 N/m,

which is comparable to the values used for BR-14 microbubbl/e therefore
conclude that the ligands do not influence in any way the #aqy of maximum
response and the maximum amplitude of oscillation of pholgpid-coated mi-
crobubbles.

Fig. 9.6A shows the frequency of maximum response as a fundii the am-
plitude AR for a phospholipid-coated bubble at a distance of iDaway from
the wall (blue circles) and for a phospholipid-coated miciable in contact with
the wall (green circles). The influence of the wall on the freracy of maximum
response is most noticeable at an amplim«ﬁf@ > 0.15, whereQpr reaches an
almost constant value. This “plateau” is reached for theblmun free space at
Qur = 1.3 and for the bubble at the wall the frequency of maximum respas
20% lowerQur = 1.1. Fig 9.6B shows the amplitude of oscillatigéfR atQur as
a function ofP, for both cases: at the wall and away from the wall. The maximum
amplitude of oscillatiorA’i"R of the bubble in free space increases rapidly with in-
creasing pressure, reaching an amplitaif€ = 0.15 at a pressurk, = 37.5 kPa,
while the bubble at the wall reaches the same amplitude dffaigm only for a
much higher pressurg, = 80 kPa. The results are in good agreement with the
results found in chapter 7, where we found a decrease of &8atin Qyr and a
decrease of 50% in the resporSER, respectively.
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Figure 9.7: The relative amplitude of oscillatiofy; as a function of the acoustic pressure
P; and frequency). A) The response of a bubblg = 2.1 um in contact with the wall.
B) The response of a bubbiy = 2.2 um adherent to the wall.
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Figure 9.8: Resonance curve of a phospholipid-coated bubble (BG-Ga3Hntact with
the wall (green) and a functionalized bubble (BG-6438) aelfieto the wall (black) in-
sonified with a pressuri@, = 100 kPa. The resonance curves are obtained from Fig. 9.7.

Each frequency of maximum response is obtained from thalregponse of a
bubble insonified with at least 11 subsequent frequencies.ekperiment is then
repeated for different acoustic pressures. The resporike biibbleA; is shown in
the iso-contour plot in Fig. 9.7 for the full set of appliecgpsures and frequencies.
The response of a phospholipid-coated microbubble withdauseRy = 2.1um
at the wall (A) is compared to the response of a microbubbté similar radius
Ro = 2.2 um adherent to the wall (B). As observed in Fig. 9.6A, the festpy
of maximum respons@yr of the bubble in contact with the wall decreases with
increasing pressure as shown in Fig. 9.7, reaching a fregu@pr = 1.1 at a
pressureP, > 65 kPa. For the bubble adherent to the wall the highest regpon
is observed at the lowest applied frequerizy= 0.7 at acoustic pressurd >
55 kPa. Due to the limited bandwidth of the transducer théblasbcould not be
insonified at even lower frequencies and the exact frequeftyaximum response
could therefore not be obtained for the bubble adherentetovtil.

The resonance curves of the bubble in contact with the wallthnse of the
adherent bubble shown in Fig. 9.7 are compared in Fig. 9.8.atbustic pressure
is 100 kPa. We observe that the amplitude of oscillation efdadherent bubble
at Q = 0.7 (which we already indicated above, is not its frequency akimum
response) is already 25% higher than the ampliwﬁ% of the bubble at the wall.
Comparing the frequency of maximum response of the adhbudrileQyr < 0.7
with the bubble in the unbounded flui2l,r = 1.4 a decrease is observed of at least
50%. A second adherent bubble was present in the field of viistahced =
15 um =~ 7Ry). Therefore we performed simulations to verify if this rekeble
difference was due to the interaction with the second bubflee simulations
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show that the neighboring bubble decreases the frequenmawinum response
with 6% and consequently it cannot account for the 50% changesponse.

We now try to interpret the observed change in response byimlgahe analogy
with the harmonic oscillator model (see e.g. [29]). An datiihg bubble can be
thought of as a harmonic oscillator, where the inertia (“shasof the oscillator) is
due to the surrounding fluid that is displaced, and the riegfdorce (with “spring”
constank) comes from the gas inside the bubble that is compressed émated
bubble, the dilatation and compression of the viscoelasigting contributes to
the stiffness of the system. The bubble-wall interaction loea modeled through
the method of images [32]. The wall is replaced by an “imagaitde, which
mirrors the dynamics of the real bubble and generates a flaty lty canceling
out the primary flow, satisfies the zero normal velocity ctindiat the wall. The
oscillations of the image bubble effectively result in aorgased “mass” of the
system, and therefore in a decrease of the eigenfreqtmmey\/(k/ m) of about
20% for a perfectly rigid wall. The much larger decrease @ ffequency of
maximum response for a bubble adherent to a wall can be metexpas a larger
decrease ik/m. Following the linear approach, we can see the bubble adhtre
the wall as two coupled harmonic oscillators. The coupliag cause a change in
the totalk/m as well as a change in the total damping. However, the miopsc
mechanisms that cause the decrease in the frequency of omaxiesponse remain
unclear at this stage.

Future research on adherent bubbles at lower insonatiqudreies must be per-
formed to reveal frequency of maximum response of the adherédble. Further-
more, increased statistics and additional control expemisare required (negative
control) where the functionalized bubbles are positioneanauncoated OptiCell
wall and vice versa phospholipid-coated bubbles at a taggety OptiCell wall.
Finally, in this research the focus was on bubbles with ausidy ~ 2um, which
is relatively large with respect to the mean radius of thebbeilsolution. The dy-
namics of smaller ultrasound contrast agent microbubliiesld be investigated
to see whether they respond similarly to the applied ultrado

9.4 Conclusions and outlook

We investigated the influence of adhesion of a functiondlizebble to a target
membrane on its frequency of maximum response and amplatidscillation.

The bubble dynamics in the unbounded fluid was unchangeduioblés con-
taining with targeting ligands as compared to phospholgudted microbubbles
alone. Comparing the response of functionalized bubbléserunbounded fluid
with the response of an adherent bubbles a decrease of d4eobibe frequency
of maximum response was observed for the adherent micrédsibbhe frequency
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9. ADHERENT BUBBLE DYNAMICS

of maximum response of a phospholipid-coated bubble flgatinthe OptiCell
wall was observed to decrease with 20%, which is in exceligntement with the
results found in chapter 7. This finding might prove usefuldeveloping image
protocols to discriminate between adherent and freelylztimg bubbles.
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Conclusion and outlook

Bubbles areideal ultrasound contrast agents because of their high scattering cross-
section, which is 9 orders of magnitude higher than of a solid particle of the same
size. Moreover bubbles scatter ultrasound nonlinearly, which boosts the contrast-
to-tissue ratio through the use of elegant pulsing schemes such as those used in
pulse inversion and power modulation imaging. It was aways believed that damp-
ing as a result of the viscoelastic bubble coating, which was added to prevent the
bubbles from quickly dissolving in the blood, would reduce the bubble response
and suppress the nonlinear bubble echoes.

There has been extensive experimental evidence that the behavior of coated bub-
bles is much more nonlinear than expected from theoretical considerations. These
include the observations of “ compression-only” behavior [10], strong subharmonic
response at low acoustic driving [7, 47, 59], and the “thresholding” behavior [11].
In this thesis it was shown that the nonlinear behavior of the phospholipid mono-
layer isresponsible for many of the observed nonlinear bubble dynamics phenom-
ena. We show that the shell-buckling model of Marmottant et al. [12], which
includes an elastic regime as well as buckling and rupture of the shell, captures
in detail the nonlinear echo responses. The key factor turned out to be the initial
surface concentration of phospholipids at the bubble surface, which in the model
is expressed in the effective surface tension o(Rp) at rest. A bubble with arela-
tively low surfactant concentration behaves elasticaly, at least initially, and shows
a strong decrease of the frequency of maximum response for increasing acoustic
pressures. Thisleads to a pronounced skewness of the resonance curve, which we
show to be the origin of the “thresholding” behavior (Ch. 3). On the other hand, a
bubble with a high packing of surfactants, such that the interface will buckle upon
compression, shows a strong “compression-only” behavior (Ch. 4), aswell as sub-
harmonics (Ch. 5). The other two shell parameters, the shell elasticity x and the
dilatational viscosity ks, have a minor influence and change only qualitatively the
observed nonlinear phenomena.

We have shown that the elastic regime of the coating of the bubble isonly of the
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order of 1% of the resting radius of the bublile For a bubble witiRy = 3 um,
this corresponds to a change of only 30 nm, which falls withenoise level of
our optical high-speed camera Brandaris 128 and acouggctim likewise. We
can therefore conclude that if bubble oscillations weregtolbserved, in principle
the shell behavior is then no longer purely elastic. Theingatas also observed
to influence the dynamics primarily below the frequency oikimaum response
and at low amplitude oscillations.

We also show that the proximity of a wall changes the bubbleadyics. The
bubble-wall interaction decreases the frequency of mamimesponse and the
amplitude of oscillation at the frequency of maximum resg@iGCh. 6 and 7).
Nonetheless, all observed nonlinear phenomena are aoégutnonlinear behav-
ior of the bubble coating. The previously mentioned noraimieubble dynamics,
subharmonics, “compression-only” and “thresholding” &&br can be identified
in experiments performed while the bubbles are in contath thie wall. This
means that in the description of bubble-wall interactidresftequency or pressure
may change at which the phenomena occur as a result of thengeesf the wall,
or an acoustic image bubble, the nonlinearities are stilegwed by the behavior
of the phospholipid shell. We also show that once the bulsbtiriven below its
frequency of maximum response, where the coating stronghgases the nonlin-
ear behavior, a small change of the driving pressure as # mtédhe position of
the bubble with respect to the wall allows for an extremelysgéve evaluation of
the bubble-wall interaction. Moreover we quantify the sthwadiated by an os-
cillating bubble which causes a secondary radiation forcaeighboring bubbles
and we show that the history force plays a major role in thestedional dynamics
of coated bubbles (Ch. 8).

In a pilot study we show that the frequency of maximum respasfsbubbles
bound to a target substrate was decreased by 30% as comparbdtible floating
up freely, but in contact with the substrate. At this stagerficroscopic details
of the targeting mechanism remain unexplored and futuesreh may reveal the
intrinsic properties of the targeting strategies for adhemicrobubbles designed
for molecular imaging with ultrasound.

In medical ultrasound imaging there is an ongoing efforatesl to the clinical
requirement to resolve in more and smaller details the aedumages. By in-
creasing the ultrasound driving frequency the image réisolcan be increased at
the expense of loss of penetration depth. Moreover an isereithe frequency re-
quires the use of smaller bubbles in contrast-enhancealsolind imaging, while
in this thesis the focus was on the larger contrast microlesblithin the size
distribution of the sample, for smaller bubbles the dilatzl viscosity becomes
more important and it is quite likely that the smallest beistdre critically damped
or even overdamped. The dynamics can therefore changécdtiysand it is im-
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portant to explore the parameter space for these smalldidsib

In this thesis the general phenomena were well predictddavbnstant dilation
viscosity. On the other hand, we have shown (Ch. 3) that ®iyhical values for
the shell viscosity used here, a constant dilatationalogisg ks would predict
oscillations that decay gradually with time after the trand has been switched
off, while these oscillations are not observed experinignta/an der Meeret
al. [41] found a decrease in the dilatational viscosity of thatoa with increasing
dilation rate, which could support also the above obseswaati Furthermore, it is
expected that not only the shell elasticity, but also thdl sigeosity of the coating
depends on the state of the shell, i.e. whether it is eldstickled, or ruptured.
And as said, for the larger bubbles studied in this thesisdlagive contribution of
the shell viscosity can be small, for smaller bubbles theous contribution can
be important, if not dominant.

All single bubble dynamics experiments presented in ttesithwere performed
in anin-vitro setup in a chamber filled with a saline solution at room temper
ture. Here, we briefly discuss the potential changes whemtbebubbles would
be injected intravenously in an-vivo application. As blood has a higher liquid
viscosity the bubble oscillations will be more damped. Oa ¢ither hand, the
shell viscosity contributes to 75% of the total damping,deewe expect very little
change as a result of viscous damping of the liquid. The inflaeof the temper-
ature on the bubble dynamics has been investigated andlmsdry Vos (PhD
thesis 2010). The nonlinear shell behavior such as “comsjmesonly” behav-
ior and “thresholding” behavior were still observed at bdadgperature, which
indicates that the shell still behaves as described by tak-lshickling model by
Marmottantet al.[12]. UCA microbubbles injected in blood will be surroundeyg
red blood cells which will cause an interaction between thigbles and the cells.
Moreover, in narrow vessels there will be a strong inteaactvith the endothelial
wall, including its associated boundary layer flow. And whihe pressure in the
vasculature periodically changes during the cardiac ¢ydesffect on the ambi-
ent radius of the bubble, consequently on the local surihctancentration at the
bubble interface will modulate the effective surface tensdf the bubble and its
dynamics. In fact, this highly sensitive feature of the Heldmating can be applied
for anin-vivo non-invasive local pressure measurement [59, 149].

Our detailed knowledge of the nonlinear shell behavior hasduced us to the
explanation of new nonlinear bubble dynamics such as thiesttolding” behavior
and subharmonics, which can be exploited by pulse-echaigposs to increase the
contrast-to-tissue ratio. Power modulation would beneditnf “thresholding” be-
havior. Power modulation imaging for instance would bensfinendously from
the “thresholding” behavior. As power modulation was algeproven to be bene-
ficial for perfusion imaging at low mechanical index, e.d (], the question arises
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10. CONCLUSION AND OUTLOOK

whether we were not using the “thresholding” behavior oftcast bubbles al-
ready. Subharmonic imaging will benefit from the strong subionics produced
by a “buckled” bubble. The frequencies and pressures usedddical ultrasound
imaging can be optimized numerically with the use of theldetkling model and
thereby improve the current pulsing schemes for power nadidul, pulse inver-
sion and subharmonic imaging. Altogether, we now have thelnt opportunity
to develop new pulsing schemes with improved sensitivity secificity.
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Summary

To enhance the visibility of the blood pool, ultrasound casit agents (UCA) have
been developed, enabling the visualization of the perfusioorgans. The typ-
ical UCA is composed of a suspension of microbubbles (ratliésum) which
are coated with a phospholipid, albumin or polymer shell rievent the bubble
from quickly dissolving in the blood. The key feature of akpund contrast agent
microbubbles is their nonlinear response. Special putbe-¢echniques such as
power modulation and pulse-inversion have been develapéistinguish the non-
linear echoes of the microbubbles in the blood pool echo ftoentissue echo
to optimize the contrast-to-tissue ratio. A new promisimginvasive technique
for disease-specific imaging is molecular imaging withadobund, enabling the
diagnosis of for instance thrombus and inflammation. Sekednaging is per-
formed by using ultrasound contrast agents containingudgaon their shell that
bind specifically to selective biomarkers on the membranerafothelial cells,
which constitute the blood vessel wall. For these moledolaging applications it
would be highly beneficial to distinguish acoustically beam adherent and freely
circulating microbubbles.

To increase the contrast-to-tissue ratio of the blood piosl important to de-
velop pulse-echo techniques based on the nonlinear acoasponse of the bub-
bles. The optimization of pulse-echo techniques for mdécmaging applica-
tions demands an even deeper understanding of the nonliyeamics of the
microbubbles, in particular the interaction of (targetédipbles with a neigh-
boring wall. For all these reasons we must investigate theauahycs of single
phospholipid-coated microbubbles in great detail. Befweediscuss the new re-
sults, we start with an overview of the experimentally ofsedrphenomena of
phospholipid-coated bubbles and the existing in chaptdm2. subsequent chap-
ters can be divided basically in three subjects: the phdgptiecoating, the prox-
imity of a boundary, and the adherence of bubbles to a boyndar

In the first part of this thesis we investigate experimenttik influence of the
phospholipid-coating on the dynamics of ultrasound cattagent microbubbles.
We record the radial dynamics of individual microbubblegwein ultra-high speed
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camera as a function of the driving pressure and frequeneyolgerve a strong
nonlinear contribution of the coating on the dynamics ineagnent with previ-
ous experimental observations. These include the “thtdsigd behavior (chap-
ter 3), ‘compression-only’ behavior (chapter 4) and substwarics (chapter 5). The
phospholipid-coating is found to enhance the nonlineablaitesponse at acous-
tic pressures as low as 5 kPa. For increasing acoustic pessauwlecrease of the
frequency of maximum response is observed for a distinssadfibubbles, leading
to a pronounced skewness of the resonance curve, which wetshoe the ori-
gin of the “thresholding” behavior. For other bubbles thegfrency of maximum
response is found to lie just above the resonance frequdrary uncoated micro-
bubble, and to be independent of the applied acoustic peessbe shell-buckling
bubble model by Marmottaret al,, which accounts for buckling and rupture of
the shell, captures both cases for a single value of the sledticity and shell
viscosity. The difference in the observed nonlinear dyrarbetween the two sets
of bubbles can be explained by a difference in the initiafesie tension, which is
directly related to the phospholipid concentration at thieldbe interface. A bubble
oscillating in the elastic regime shows “thresholding” &ebr and is specifically
beneficial for power modulation imaging. A bubble with antiadi radius that
equals the buckling radius shows “compression-only” bedteand subharmonic
behavior as these phenomena depend strongly on the secavatide of the ef-
fective surface tension. The subharmonic behavior is v@sresting for imaging
purposes, as the tissue signal lacks a subharmonic contpaierfound that the
elastic regime is in the order of 1% of the bubble radius, ashall change in the
initial bubble radius is sufficient to change the initial fage tension, leading to a
dramatic change of the observed behavior. As the shelllimgcknodel describes
the dynamics of phospholipid coated bubbles in great détaimodel allows for
an optimization of current pulse-echo techniques and feidiévelopment of new
pulse-echo techniques.

The second part of the thesis focuses on the interactiomgfesphospholipid-
coated bubbles with a boundary. A combined optical tweeardsBrandaris 128
ultra-high speed camera setup allowed us to investigatelythamics of a single
bubble at controlled distances from an OptiCell wall, andéscribed in detail in
chapter 6. In chapter 7 the proximity of the OptiCell wall iseéstigated below,
at, and above the bubble’s frequency of maximum responsefirgténvestigate
the influence of the wall in case the coating of the bubble itites influence, i.e.
above its frequency of maximum response and at high amplitdiebscillations.
We observe that the radial response of the bubbles decredtbedecreasing dis-
tance from the wall. The frequency of maximum response wasddo decrease
with about 20% at the wall as compared to the bubble osciiatr from the wall.
The experimental results are compared to simulations peed with a numeri-
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cal model, which accounts for the interaction of a coatedbltwith a compliant

boundary. The trend in the experiments and simulationsragpod agreement
when the bubble is driven above resonance where the shéfilmdgions are small.
Below resonance, where the bubble response is dominatdtehyonlinear shell
behavior, simulations predict an increase in the ampliwidescillation with de-

creasing distance from the wall, while we measure quite pgosite namely a
decreasing response with decreasing distance. We am¢i¢hzt the nonlinear dy-
namics caused by the phospholipid-coating of the bubbtevalfor an extremely
sensitive assessment of the boundary conditions of theéiddl interaction, and
reveals the presence of a primary reflection of the ultraddigam.

A bubble near a boundary oscillates radially, but also tedosy. In chapter 8
we investigate the translatory oscillations caused byataiti force of a two bub-
ble system. Optical tweezers are used to isolate a bubbidrpen neighboring
boundaries, so that it can be regarded as if in an unboundied diud the hydro-
dynamic forces acting on the system can be identified unarobily. Since the
coating enforces a no-slip boundary condition, an incret@sscous dissipation is
expected due to the oscillatory component, which is acealfur by the inclusion
of a history force term in the force balance equations. Tk&maneous values
of the hydrodynamic forces extracted from the experimetdigdh confirm that the
history force accounts for the largest part of the viscouseo

In the third part of the thesis we investigate the influencadbference on the dy-
namics of the microbubbles, in particular on the frequerfapaximum response,
by recording the radial response of individual microbublds a function of the
applied acoustic pressure and frequency. We show thatefadncy of maximum
response of adherent microbubbles is lower than for buldbkke unbounded fluid
by as much as 50%, while it is more than 30% lower for a bubbloimtact with
the wall. The strong change of the frequency of maximum nes@ads caused by
adhesion of the bubbles to the wall as no influence was fouledlyday the pres-
ence of the targeting ligands on the bubble dynamics. THeislthe frequency
of maximum response may prove to be important for molecuteging applica-
tions with ultrasound as these applications would beneiihfan acoustic imaging
method to distinguish adherent from freely circulating mimbbles.
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Samenvatting

Van alle medische beeldvormingtechnieken is ultrageleidhéest gebruikte tech-
niek. Ultrageluid is relatief goedkoop, bovendien kunneelderreal-timeen aan
het bed van de patiént worden gemaakt. Echobeelden vanatbldeding van
organen vertonen een relatief laag contrast wat een diexd@ is van de lage
verstrooiingseigenschappen van de rode bloedcellen. d¢igtast van bloed kan
worden verhoogd door gebruik te maken van een contrastiidééecontrastmid-
del bestaat uit microscopisch kleine belletjies met eeralstian 1-5 micrometer.
De compressibiliteit van de bellen zorgen voor een weeskagtvan het ultra-
geluid die circa 9 ordes hoger ligt dan van een vast deeltjedezelfde grootte.
De bellen hebben een schil, een coating, die de bel stadsilisa voorkomt dat de
bellen oplossen in het bloed. De echo van de bellen is stetkineair ten opzichte
van de echo van het weefsel. Het niet-lineaire gedrag vaeltenbwordt gebruikt
in de verschillende puls-echo technieken, zoals ‘power utaiidn’ en ‘pulse-
inversion’ die zijn ontwikkeld om het contrast tussen castbellen en het weefsel
zo optimaal mogelijk te versterken. Een nieuwe veelbeldeetoepassing van
contrastbellen is beeldvorming op moleculair niveau (mwl@ imaging), waar-
bij bellen worden beplakt met antilichamen welke zich henkdan biomarkers op
celmateriaal. Op deze manier kan bijvoorbeeld trombosengstekingen in het
lichaam zichtbaar worden gemaakt. Voor deze toepassirsgeet van belang om
akoestisch onderscheid te maken tussen bellen die vastgetiten aan de cel-
wand en bellen die vrij door de bloedbaan circuleren. Voaedeeuwe toepassin-
gen moeten de puls-echo technieken verder worden geojstgeal, want naast
het begrip van het akoestische gedrag van de bellen in dewoigistof is hier ook
de interactie van de bellen met de wand belangrijk. Daardratiessentieel dat we
allereerst het niet-lineaire gedrag van fosfolipide géedmeellen onder instraling
van ultrageluid volledig in kaart brengen en daarna deactex met de wand. We
beginnen daarom met een korte beschrijving van het ons delgedrag van fos-
folipide bellen. De daaropvolgende hoofdstukken kunnerdeiw onderverdeeld
in drie onderwerpen: de invioed van de fosfolipide coatitg,interactie van de
bel met de wand en het gedrag van een bel die vastgehechhzitasand.
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In het eerste deel van dit proefschrift onderzoeken we éxgeteel de dyna-
mica van fosfolipide gecoate microbellen. De radiéle l@d@s van enkele bellen
worden vastgelegd met een hogesnelheidscamera, de Bead@&; terwijl de
aangelegde druk en frequentie van de ultrageluidspulstwgendarieerd. We vin-
den, in overeenstemming met eerder gerapporteerd werkstedn niet-lineair
gedrag zoals het zogenoemde “thresholding” gedrag (htud@3, “compression-
only” gedrag (hoofdstuk 4) en opwekking van subharmonisadgeuenties (hoofd-
stuk 5). De fosfolipide coating veroorzaakt niet-lineadgag bij zeer lage drukken
van 5 kPa. Voor een specifieke groep bellen vinden we bij toenele druk een
sterke asymmetrie van de resonantiecurves. We laten zietleda asymmetrie
tezamen met een afname van de maximale responsfrequemtggaedslag ligt
aan het “thresholding” gedrag. De frequentie waarbij eerimale respons op-
treedt ligt voor de overige gemeten bellen net boven de &iggmentie van een
ongecoate bel. Het gedrag van gecoate bellen kan wordendgdieerd met een
aangepaste Rayleigh-Plesset vergelijking, de standaavddingsvergelijking van
de bel. Het model van Marmottaet al. is gebaseerd op het quasi-statisch gedrag
van fosfolipide monolagen en neemt naast elastisch gedmagle schil ook het
kreukelen van de schil bij hoge fosfolipiden concentragieet opbreken van de
monolaag bij een relatief lage concentratie van de fosti#ip. Dit model beschri-
jft het niet-lineaire gedrag van de gecoate bellen voor eeeke waarde van de
elasticiteit en viscositeit van de schil. Het verschil irdgeg kan worden verk-
laard door de initiele concentratie van fosfolipiden dieewwordt uitgedrukt in
de initiéle oppervlaktespanning. De coating van een leetitiresholding” gedrag
vertoont is aanvankelijk elastisch. “Thresholding” gediszeer interessant voor
beeldvor- ming met behulp van de power modulation puls@-debhniek. Aan
de andere kant, bellen die dichtbij de overgang van hetigtast en gekreukelde
gebied zitten vertonen “compression-only” gedrag en Ist@sharmonische fre-
quenties zien. Aangezien de lineaire echo van weefsel ggg#raemonische fre-
quentie kan bevatten is het zeer interessant om deze suihianine belrespons te
gebruiken voor contrastbeeldvorming. Het gebied waariocodding zich elastisch
gedraagt is totaal maar ongeveer 1% van de belstraal. Egm klerandering in
de belstraal is dus genoeg om een drastische veranderinmetéelgedrag te be-
werkstelligen. Met een juiste keuze van de schilparamebtaakt het model van
Marmottantet al. het mogelijk om grotendeels numeriek de bestaande puts-ech
technieken te optimaliseren en nieuwe technieken te okélek.

In deel twee van dit proefschrift ligt het focus op de intéiwan fosfolipide
gecoate bellen met een wand. Een optisch laser pincet &ébpiieezers) gekop-
peld aan de hogesnelheidscamera Brandaris 128 maakt hetijnogh de positie
van de bel ten opzichte van de wand nauwkeurig te contral&emgecombineerde
opstelling wordt in detail besproken in hoofdstuk 6. In hastéik 7 onderzoeken
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we de nabijheid van een polystyreen membraan onder, op eanlu®/maximale
responsfrequentie. Boven de maximale responsfrequevdi, de coating weinig
invioed heeft op de beldynamica, neemt de oscillatieaogitaf dichter bij de
wand. De maximale responsfrequentie van een bel aan de w&dd4 lager dan
die van een bel in de vrije vloeistof. De resultaten zijn eéegen met een model
dat speciaal ontwikkeld is voor gecoate bellen dicht bij éemne flexibele wand.
De gemeten trend in het gedrag wordt inderdaad goed vodrsipelr het model
wanneer de invloed van de fosfolipide coating minimaal is1d& de maximale
responsfrequentie, waar de invloed van de coating het delgelomineert, neemt
de oscillatieamplitude af dichterbij de wand. Dit in tegetisg tot het model
dat een toename van de oscillatieamplitude voorspelt. Wkenep dat het sterk
niet-lineaire gedrag van de fosfolipide gecoate bellemgjkbkan worden om heel
kleine veranderingen in de omgevingsdruk te meten. Delinie&ire invioed van
de fosfolipide coating op de beldynamica onthulde hieratjekn reflectie van de
primaire ultrageluidspuls aan het membraan niet werd nreegen in het model.

Een bel dichtbij een wand oscilleert radieel en vertooneinoien een translatie.
In hoofdstuk 8 onderzoeken we met behulp varogécal tweezerspstelling de
translaties van een geisoleerd bellenpaar. De twee bslbeden gepositioneerd
in de vrije vloeistof omsecde hydrodynamische krachten te onderzoeken. De
fosfolipide coating van de bellen zorgt voor eeo-slip randvoorwaarde op de
belwand en door de beloscillaties neemt de viskeuze dissifme. Een kracht-
enbalans laat zien dat de zogenaamde “history force”, dmoveaakt wordt door
een interactie met de door de bel zelf veroorzaakte weneglgitootste deel van
het energieverlies veroorzaakt.

In het derde deel wordt gekeken naar het gedrag van fostelipecoate bellen
die vastgehecht zitten aan een wand. De frequentie waatantplitude maxi-
maal is wordt gemeten voor enkele bellen door het meten vaadiele oscillaties
bij verschillende drukken en frequenties van het ultragelzie hoofdstuk 9. De
resonantiecurves van vastgehechte bellen worden veegelalet die van enkele
bellen in de vrije vloeistof. De frequenties van maximalspans blijken 50%
lager te zijn dan die van een bel in de vrije vloeistof en 30&ktadan die van een
bel los tegen de wand. Er werd geen noemenswaardige veragmdgevonden in
het gedrag van gefunctionaliseerde bellen, d.w.z. bekgalit met antilichamen,
ten opzichte van normale contrastbellen. Hieruit leidejedvilat de sterke veran-
dering in de frequentie van maximale respons wordt veradtzaoor het fysische
mecha- nisme van hechting van de bellen aan de wand. De ilensdl respons
kan het mogelijk maken om akoestisch onderscheid te mals=enubellen die
vastgehecht zittend aan de wand en bellen die vrij circolei@or de bloedbaan.
Deze verandering van het resonantiegedrag is dus in hogeintatessant voor
toepassingen imolecular imagingnet ultrageluid.
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S.A. thank you for supplying the microbubbles. Special Ksato Peter Frinking,
Thierry Bettinger, and Marcel Arditi for the inspiring disgsions about microbub-
bles.

Erg belangrijk voor mijn supertijd binnen de vakgroep wamdjm (ex-)kantoor-
genoten. Henk Jan, Sander, Ramon en Hanneke, niet alleeernagk weten-
schappelijke discussies, maar we losten ook elkaars matlédiex problemen op.
Toch wil ik jullie vooral bedanken voor het altijd luisteren het delen van lief en
leed. Valeria and Paolo as signs say more than words, VFClisegd to say. My
current office mates Alvaro, Koen, and Laura thank you fongesio patient with
me during these last stressed months.

An essential part of what made my time at PoF wonderful wastimosphere
and the great colleagues. With you | spent lots of evenings g@ent in bars in En-
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James and Arjan thank you for helping me with the chapterlamdaver layout.
| appreciate it very much that you didn't kick me out of youficd, during the
repeating question: “can we change this just a little bitefior

Carin and Valeria thank you for being my paranymphs. Carok al zagen
we elkaar vier jaar geleden veel vaker dan tegenwoordig.iné kiet nog steeds
erg leuk om af te spreken. Bedankt dat je altijd bereid bent®huisteren en
sparren als ik even niet wist wat ik moest doen. Valeria, kbador being my
colleague, neighbour, and especially my friend. Workinthwou was a pleasure
and | enjoyed the times in the lab, our conferences, and diringether.

Mama, Jan, Rik, Bas en Sanne bedankt dat jullie er altijd wopzijn. Opa,
omdat je stiekem toch heel trots bent op je kleindochteraPaplankt dat je altijd
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